สารบัญ

คำนำ

บทที่ 1 บทนำ (INTRODUCTION)
จุดมุ่งหมาย 1
คำนำ 1
ความหมายของอุทกภูมิศาสตร์ 2
ส่วนประกอบของอุทกภูมิ 3
คุณสมบัติของน้ำ 8
สรุป 13
คำ borderTop 14

บทที่ 2 อุทกภูมิตร (HYDROLOGICAL CYCLE)
จุดมุ่งหมาย 15
ลักษณะทั่วไปของอุทกภูมิตร 16
ส่วนประกอบของอุทกภูมิตร 18
การถ่ายเทของน้ำ 39
สรุป 41
คำ borderTop 42

บทที่ 3 การระเหย (EVAPORATION)
จุดมุ่งหมาย 43
การระเหยและการระเหยของน้ำในแปลงปลูกพืช 44
กลไกหลักของการระเหย 44
องค์ประกอบพืช 45
การควบคุมการระเหยและการระเกิดการระเหยของพืช 47
การระเหยของน้ำในแปลงปลูกพืชสูงสุด 51
การคำนวณพยากรณ์ของการระเหย 52
การวัดปริมาณการระเหยโดยเครื่องวัดการระเหยแบบบาง 56
การคำนวณเพื่อหาปริมาณการระเหยของน้ำในแปลงปลูกพืช 58
การวัดปริมาณการระเหยของน้ำในแปลงปลูกพืชด้วยเครื่องมือไซมิเตอร์ 65
บทที่ 4 การแทรกซึม (INFLTRATION)

<table>
<thead>
<tr>
<th>เนื้อหา</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>สรุป</td>
<td>68</td>
</tr>
<tr>
<td>ค่าถามท้ายบท</td>
<td>69</td>
</tr>
<tr>
<td>จุดมุ่งหมาย</td>
<td>71</td>
</tr>
<tr>
<td>ค่านา</td>
<td>71</td>
</tr>
<tr>
<td>ความชื้นในดิน</td>
<td>72</td>
</tr>
<tr>
<td>ความชื้นความชื้นในสนาม</td>
<td>73</td>
</tr>
<tr>
<td>ตัวการที่มีอิทธิพลต่อความชุจของการแทรกซึม</td>
<td>74</td>
</tr>
<tr>
<td>โค้งความชุจของการแทรกซึม</td>
<td>77</td>
</tr>
<tr>
<td>วิธีการคำนวณความชุจของการแทรกซึม</td>
<td>80</td>
</tr>
<tr>
<td>สรุป</td>
<td>86</td>
</tr>
<tr>
<td>ค่าถามท้ายบท</td>
<td>95</td>
</tr>
</tbody>
</table>

บทที่ 5 น้ำไหลบ่า (RUNOFF)

<table>
<thead>
<tr>
<th>เนื้อหา</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>สรุป</td>
<td>97</td>
</tr>
<tr>
<td>จุดมุ่งหมาย</td>
<td>97</td>
</tr>
<tr>
<td>ปริมาณที่มีอิทธิพลต่อน้ำไหลบ่า</td>
<td>98</td>
</tr>
<tr>
<td>การไหลผ่านชั้น (overland flow) และการไหลซึมผ่านด้านข้าง</td>
<td>100</td>
</tr>
<tr>
<td>(throughflow)</td>
<td></td>
</tr>
<tr>
<td>พื้นที่ที่หนึ่งเก่าอยู่น้ำ</td>
<td>106</td>
</tr>
<tr>
<td>การตกกร่อนของดินโดยน้ำ</td>
<td>110</td>
</tr>
<tr>
<td>สรุป</td>
<td>120</td>
</tr>
<tr>
<td>ค่าถามท้ายบท</td>
<td>121</td>
</tr>
</tbody>
</table>

บทที่ 6 น้ำใต้ดิน (GROUNDWATER)

<table>
<thead>
<tr>
<th>เนื้อหา</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>สรุป</td>
<td>123</td>
</tr>
<tr>
<td>จุดมุ่งหมาย</td>
<td>123</td>
</tr>
<tr>
<td>ความหมายของน้ำใต้ดิน</td>
<td>124</td>
</tr>
<tr>
<td>ความสัมพันธ์ระหว่างน้ำใต้ดินกับอุทกวัฏจักร</td>
<td>124</td>
</tr>
<tr>
<td>การเกิดน้ำใต้ดิน</td>
<td>126</td>
</tr>
<tr>
<td>การเคลื่อนที่ของน้ำใต้ดิน</td>
<td>135</td>
</tr>
<tr>
<td>ปัจจัยที่มีผลต่อระดับน้ำใต้ดิน</td>
<td>138</td>
</tr>
<tr>
<td>บทที่ 7 แม่น้ำ (RIVERS)</td>
<td>หน้า</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>การพัฒนาการยกระดับ</td>
<td>142</td>
</tr>
<tr>
<td>การบรรเทาช้อนของน้ำทะเล</td>
<td>143</td>
</tr>
<tr>
<td>คุณภาพของน้ำบาดาล</td>
<td>147</td>
</tr>
<tr>
<td>สารปน</td>
<td>155</td>
</tr>
<tr>
<td>ค่าความหยาบก</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>บทที่ 8 ระบบนิเวศน์ทะเลน้ำ (AQUATIC ECOSYSTEM)</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>จุดยุทธมวย</td>
<td>157</td>
</tr>
<tr>
<td>ความรู้เรื่องระบบนิเวศน์</td>
<td>157</td>
</tr>
<tr>
<td>โครงสร้างระบบนิเวศน์ทะเลน้ำ</td>
<td>158</td>
</tr>
<tr>
<td>ปัจจัยที่มีผลต่อสิ่งมีชีวิตในทะเลน้ำจืด</td>
<td>159</td>
</tr>
<tr>
<td>ระบบนิเวศน์ทะเลน้ำจืด</td>
<td>162</td>
</tr>
<tr>
<td>ระบบนิเวศน์ทะเลน้ำเค็ม</td>
<td>166</td>
</tr>
<tr>
<td>ความแตกต่างทางกายภาพระหว่างทะเลน้ำจืดและทะเลน้ำเค็ม</td>
<td>175</td>
</tr>
<tr>
<td>สารปน</td>
<td>178</td>
</tr>
<tr>
<td>ค่าความหยาบก</td>
<td>183</td>
</tr>
<tr>
<td>ค่าความหยาบก</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>บทที่ 8 ระบบนิเวศน์ทะเลน้ำ (AQUATIC ECOSYSTEM)</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>จุดยุทธมวย</td>
<td>187</td>
</tr>
<tr>
<td>ความรู้เรื่องระบบนิเวศน์</td>
<td>187</td>
</tr>
<tr>
<td>โครงสร้างระบบนิเวศน์ทะเลน้ำ</td>
<td>188</td>
</tr>
<tr>
<td>ปัจจัยที่มีผลต่อสิ่งมีชีวิตในทะเลน้ำจืด</td>
<td>188</td>
</tr>
<tr>
<td>ระบบนิเวศน์ทะเลน้ำจืด</td>
<td>191</td>
</tr>
<tr>
<td>ระบบนิเวศน์ทะเลน้ำจืด</td>
<td>201</td>
</tr>
<tr>
<td>ระบบนิเวศน์ทะเลน้ำจืด</td>
<td>203</td>
</tr>
<tr>
<td>ความแตกต่างทางกายภาพระหว่างทะเลน้ำจืดและทะเลน้ำเค็ม</td>
<td>204</td>
</tr>
<tr>
<td>สารปน</td>
<td>205</td>
</tr>
<tr>
<td>ค่าความหยาบก</td>
<td>206</td>
</tr>
<tr>
<td>ค่าความหยาบก</td>
<td>207</td>
</tr>
<tr>
<td>บทที่ 9 ผลการระบายของน้ำ (WATER POLLUTION)</td>
<td>หน้า</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>จุดประสงค์</td>
<td>209</td>
</tr>
<tr>
<td>ความหมายของผลการระบายของน้ำ</td>
<td>210</td>
</tr>
<tr>
<td>ผลิตภัณฑ์ที่ทำให้เกิดผลการระบายของน้ำ</td>
<td>210</td>
</tr>
<tr>
<td>สาเหตุที่ทำให้เกิดผลการระบายของน้ำ</td>
<td>211</td>
</tr>
<tr>
<td>ประเภทผลการระบายของน้ำ</td>
<td>213</td>
</tr>
<tr>
<td>ผลที่เกิดจากการระบายของน้ำ</td>
<td>218</td>
</tr>
<tr>
<td>การตรวจสอบความน่าเสียของน้ำ</td>
<td>218</td>
</tr>
<tr>
<td>การควบคุมผลการระบายของน้ำ</td>
<td>220</td>
</tr>
<tr>
<td>สรุป</td>
<td>221</td>
</tr>
<tr>
<td>คำถามท้ายบท</td>
<td>223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>บทที่ 10 การกำจัดน้ำทิ้ง (WASTEWATER TREATMENT)</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>จุดประสงค์</td>
<td>225</td>
</tr>
<tr>
<td>ความหมายของการกำจัดน้ำทิ้ง</td>
<td>226</td>
</tr>
<tr>
<td>ประเภทของน้ำทิ้ง</td>
<td>226</td>
</tr>
<tr>
<td>ประเภทของน้ำทิ้งที่มาจากโรงงานอุตสาหกรรม</td>
<td>227</td>
</tr>
<tr>
<td>ขั้นตอนของระบบการกำจัดน้ำทิ้ง</td>
<td>228</td>
</tr>
<tr>
<td>วิธีการกำจัดน้ำทิ้งจากโรงงานอุตสาหกรรม</td>
<td>230</td>
</tr>
<tr>
<td>สรุป</td>
<td>246</td>
</tr>
<tr>
<td>คำถามท้ายบท</td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>บรรณานูกรม</th>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>249</td>
</tr>
</tbody>
</table>
สารบัญภาพประกอบ

1.1 กลุ่มเมシยิเลถดรอเธอของโมเกุงหน้า 9
2.1 การหมุนเวียนของน้ำ หรือ อุทกวัฏจักร 17
2.2 เส้นทางแสดงความจุของน้ำในบรรยากาศโดยเฉลี่ยของโลก 19
2.3 เส้นทางแสดงความเฉลี่ยของฟื้นที่ฉลุกฉงนและการระเหยของน้ำในเขตละติจูดต่างๆ และการถ่ายเทของน้ำในแนวเส้นเมอริดิัน 21
2.4 เส้นทางภาพรวมของเส้นทางการประกอบพื้นฐานของฤดูกาลของน้ำซึ่งขึ้นอยู่กับความสามารถในการช่วยน้ำและการเก็บกักน้ำของต้น 27
3.1 ความสมดุลของพลังงานที่มีดิน 52
3.2 เครื่องวัดการระเหยแบบถังกลม 57
3.3 เส้นทางแสดงการระเหยจากฟิวผู้เป็นรายวัน และรายปีของทะเลสาบและเทือกภูเขา 58
3.4 เส้นทางแสดงความสัมพันธ์ระหว่างอุณหภูมิของบรรยากาศเฉลี่ยรายเดือนและปริมาณการระเหยของน้ำในแปลงปลูกพืช 59
3.5 กระแสทางแสดงการหาความปริมาณการระเหยของน้ำในแปลงปลูกพืชจากอุณหภูมิของบรรยากาศเฉลี่ยรายเดือน 60
3.6 ตัวอย่างของเครื่องมือวัดการระเหยของน้ำในแปลงปลูกพืชสูงสุด 65
3.7 ตัวอย่างของเครื่องมือโลชีวิเมตร 66
3.8 ตัวอย่างของเครื่องมือโลชีวิเมตรแบบสั้นบนหน้าผากได้ 67
4.1 แสดงขนาดต่างๆ ของขนาดความชื้นในต้นชื่อของอุณหภูมิระดับน้ำ 73
4.2 ภาพการกระจายของน้ำและความตื้นของน้ำ 75
4.3 เส้นทางแสดงความสัมพันธ์ระหว่างระดับความชื้นของต้นในช่วงความสัมผัสประมาณ 6 นิ้วแรกของหน้าติดของต้นกับระยะเวลาระหว่างจากที่หน้าผาก 75
4.4 ภาพแสดงอธิบายของความหนาของชั้นต้นที่อันดับใกล้กับวันเด่นและความสัมผัสของการวัดของน้ำบนผิวน้ำที่มีต่อการกระชีม 77
4.5 ใจความชื้นของการกระชีม 81
4.6 ใจความชื้นของการกระชีมมาตรฐาน 81
ภาคที่
4.7 การหาค่า K โดยอัตถ์ความสัมพันธ์ของสมการเส้นตรง 82
4.8 การพลังกระแสนดลความสัมพันธ์ระหว่าง R และ log₁₀ (f – f₀) 85
4.9 ส่วนประกอบของเครื่องวัดการแทรกซึ่งแบบที่ ๆ ไป 87
5.1 ส่วนประกอบของ overland flow แล้ว throughflow 102
5.2 ด้วยทางหน้าตัดติ่งช่วงแสดงชั้นดินต่าง ๆ ทุกชนิด 103
5.3 เลือกราฟแสดงความสัมพันธ์ระหว่างอัตราการกัดกร่อนกับร้อยละของพื้นที่จากเมื่อผึ่งรีบตก 105
5.4 เลือกราฟแสดงความสัมพันธ์ระหว่างพื้นที่ให้น้ำ 107
5.5 รูปแบบการไหลผ่านจุดเชื่อมระหว่างที่มีการไหลแบบ overland flow และ throughflow 109
5.6 เลือกราฟแสดงความสัมพันธ์ระหว่างอัตราการกัดกร่อนกับร้อยละของพื้นที่ 111
ร่างแปล
5.7 การพิสูจน์ของอัตราการตกตะกอนในลู่น้ำ 112
5.8 ภาพการกัดดินในแนวจากแรงประชาระดับน้ำ 113
5.9 เลือกราฟแสดงการกัดกร่อนและการตกตะกอนโดยการระลึกความสามารถติด 114
5.10 ภาพแสดงการเกิดทะเลสาบรูปแรกเนื่องจากการทำให้กร่อนในล่างน้ำ 115
5.11 วัฏจักรของการกัดกร่อนในเขตดินล่างชั้น 117
6.1 แผนที่แสดงความสัมพันธ์ระหว่างอุทกภูมิภูมิภูมจังหวัดที่ให้น้ำได้ดี 125
6.2 ปัจจัยต่าง ๆ ทางธรรมชาติเป็นตัวควบคุมการเกิดน้ำในดิน 131
6.3 น้ำใต้ดินแวดล้อมบริเวณที่ราบและบริเวณที่ต่างระดับ 133
6.4 ระบบน้ำใต้ดินและน้ำบาดาล 134
6.5 กระบวนน้ำใต้ดินและเกิดจากการสูบน้ำจากป่า 139
6.6 การทดสอบระดับน้ำใต้ดินเนื่องจากการหลอมเชื่อมกันของกวางน้ำใต้ดิน 139
6.7 ผลการทดสอบจากการดัดแปลงผ้าน้ำเชื้อผันผันน้ำซึ่งจะทำให้ระดับน้ำใต้ดินลดลง 141
6.8 การกระจายของน้ำระหว่างเวลารับน้ำผันผันผันน้ำช่วยฝัง 144
6.9 แนวปะทะระหว่างน้ำเฉลี่ยกับน้ำจืดในชันผันผันน้ำช่วยฝังที่ไม่ถูกเก็บกัก 145
6.10 การระลึกจากการแหล่งก้าจัดของเสี้ยวสูงน้ำใต้ดิน 148
7.1 ลักษณะของพื้นที่ลู่น้ำ 159
<table>
<thead>
<tr>
<th>หน้า</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2 การเปรียบเทียบการทำความรู้ในการทำแบบแบบรายเรียงและแบบบันทึก</td>
</tr>
<tr>
<td>7.3 ลักษณะของร่างหน้าที่ 4 แบบ</td>
</tr>
<tr>
<td>7.4 ความคลาดเคลื่อนของร่างหน้า</td>
</tr>
<tr>
<td>7.5 ส่วนประกอบทางเคมีของทางหน้าไถ่ด้วยไถ่</td>
</tr>
<tr>
<td>7.6 ขั้นตอนการทำงานไถ่ด้วยไถ่</td>
</tr>
<tr>
<td>7.7 ทารกับไถ่ในแผนภูมิแบบมัดกับเป็นตราประภานาค</td>
</tr>
<tr>
<td>7.8 ตัวอย่างการเปลี่ยนลักษณะของลำนำและการเปลี่ยนความลาดเท</td>
</tr>
<tr>
<td>7.9 การเชื่อมต่อกันระหว่างคันเดินกับที่ลู่ด้านล่างลำนำ และจุดที่เชื่อมต่อกันของ</td>
</tr>
<tr>
<td>7.10 แผนแม่พันธุ์ที่มีฐานเป็นพืชหน้าที่วางตั้งแยกออกเป็นแผนรวม</td>
</tr>
<tr>
<td>7.11 ทารกับอุปกรณ์ลำนำทางหน้าไถ่ด้วยไถ่</td>
</tr>
<tr>
<td>7.12 ขั้นตอนของลำนำ 5 ขั้น</td>
</tr>
<tr>
<td>8.1 ระบบนิเวศน์แหล่งน้ำจัดของปานามา</td>
</tr>
<tr>
<td>8.2 การทำต้นทางทางน้ำและทำการประยุกต์ใช้ของทางน้ำทางน้ำในระบบนิเวศน์แหล่งน้ำ</td>
</tr>
<tr>
<td>8.3 การนำกระรธ resolves ของอุปกรณ์ในทะเลสาบ</td>
</tr>
<tr>
<td>8.4 ขั้นอุปกรณ์ในทะเลสาบสลิ่งในเขต必不可少</td>
</tr>
<tr>
<td>8.5 โดยภาพแสดงการประยุกต์ใช้ของน้ำในทะเลสาบที่มีการแบ่งชั้นอุปกรณ์</td>
</tr>
<tr>
<td>8.6 รูปแบบของชั้นอุปกรณ์มีลักษณะตามฤดูกาลแต่ ๆ ในทะเลสาบมีตัวที่ต่าง ๆ ไปในระบบหนึ่งปี</td>
</tr>
<tr>
<td>8.7 รูปแบบของชั้นของอุปกรณ์มีลักษณะตามฤดูกาลต่าง ๆ ของทะเลสาบที่ไม่คงตัว</td>
</tr>
<tr>
<td>8.8 ความสามารถในการรับอุปกรณ์ของน้ำที่อุปกรณ์ต่าง ๆ</td>
</tr>
<tr>
<td>8.9 การเปลี่ยนแบบอุปกรณ์ในแผนที่แบบเรียงกันทะเลสาบช่วงฤดูหน้า</td>
</tr>
<tr>
<td>8.10 โครงสร้างของทะเลสาบใช้แบ่งออกได้เป็น 3 เขต</td>
</tr>
<tr>
<td>10.1 ระบบกำลังน้ำที่แบบเดิมของ tran</td>
</tr>
<tr>
<td>10.2 แผนผังของระบบแบบราบรื่น</td>
</tr>
<tr>
<td>10.3 ปฏิบัติการชาวค้าแบบไม่ใช้ยกน้ำ</td>
</tr>
<tr>
<td>10.4 แผนผังระบบ Anaerobic contact หรือ Anaerobic Activated Sludge</td>
</tr>
</tbody>
</table>
สารบัญตารางประกอบ

ตารางที่

1.1 ลักษณะประกอบของอุทกภูมิ 4
1.2 ปริมาณน้ำในทะเลสาบนาจิตทั่วโลก 7
1.3 คุณสมบัติทางกายภาพของน้ำ 12
2.1 ปริมาณน้ำที่คลื่นที่ไปพร้อมกับกระแสะน้ำในมหาสมุทรและความ เจมของกระแสลมท้องของน้ำ 22
2.2 ปริมาณการไหลของแม่น้ำและการระเหยของน้ำตลอดปีของสุ่มน้ำที่มี ภูมิประเทศแบบคาร์สโตลที่กั้นอยู่และที่กั้นหมด 25
2.3 ปริมาณน้ำที่ระบายของปริมาณน้ำไหลเข้าในถุกไปไม่หลั่งในเขตป่าฝน 30
2.4 การไหลลงสู่ทะเลของแม่น้ำสายต่าง ๆ ทั่วโลก 31
2.5 ปริมาณการไหลของแม่น้ำสายต่าง ๆ ที่ภูมิภาคต่าง ๆ 36
2.6 การบริโภคน้ำของตัวในโลก 37
2.7 ลักษณะการฝายของน้ำ 40
3.1 การตายท่าและการระเหยของน้ำ 50
3.2 การควบคุมน้ำในน้ำมันตัว 53
3.3 การควบคุมน้ำในน้ำมันตัว 55
3.4 การก่อวัสดุ 61
3.5 การเปลี่ยนแปลงที่ผ่านมาได้ปริมาณเส้นรุ้งและเส้นแฉอก 62
5.1 ความถี่การกระฮึ่มของดินและน้ำ 100
5.2 ความเปลี่ยนแปลงของการราบรื่นของน้ำได้และชนิดของดินกับ ความเสี่ยงของดินในป่าแห่งหนึ่งซึ่งมีความชัน 15 องศา 106
5.3 ข้อความสามารถของน้ำในการเคลื่อนย้ายน้ำของดินขนาดต่าง ๆ 111
6.1 คุณภาพของน้ำของโลก 125
6.2 การแสดงความโทษและความสามารถให้น้ำซึ่มผ่านได้ ของหินหรือดินทางธรรมชาติ 127
6.3 มาตรฐานน้ำบาดาลที่จะใช้บริโภคได้ 150
6.4 มาตรฐานน้ำบาดาลที่ใช้สำหรับการน้ำที่ใช้งาน 154
ตารางที่

7.1 สัมประสิทธิ์แสดงลักษณะของผนังน้ำสายสาดที่ ๆ ของโลก 161
10.1 เปรียบเทียบศักยภาพหรือความสามารถที่จะก้าวขั้นสู่โดยวิธีการ 244
 ขั้นตอน การไหลผ่านชั้น และการไหลซึม
10.2 วิธีการก้าวขั้นสู่ทั้งของโรงงานอุตสาหกรรมต่าง ๆ 245