บทที่ 14
การคาดการณ์การเปลี่ยนแปลงภูมิอากาศและผลกระทบที่เกิดขึ้น

ผลกระทบของคาร์บอนไดออกไซด์ในภูมิอากาศมีความสำคัญมากขึ้นในอนาคตซึ่งเกิดจาก
การเผาไหม้ซึ่งเริ่มจากหลักๆ คือ การเผา ไม้และไม้ไผ่ในแปลงและการเผาไร่ที่ทำให้ผล
การปลูกไม้พุ่มขึ้นอย่างชัดเจนกว่า 10,000 ปีที่ผ่านมา ซึ่งเป็น
สาเหตุทำให้การเปลี่ยนแปลงทางธรรมชาติและเป็น
สาเหตุของการเปลี่ยนแปลงของภูมิอากาศและสิ่งแวดล้อมอย่างมาก ตั้งแต่การ
เปลี่ยนแปลงของภูมิอากาศและภูมิอากาศ ผลกระทบของการเปลี่ยนแปลงของ
ประชากรที่มีผลต่อการพัฒนาของคาร์บอนไดออกไซด์ในบรรยากาศและมากกว่าที่เหมาะสม
จะต้องขับน้ำที่

สิ่งที่ต้องการขับน้ำคือ การเปลี่ยนแปลงของภูมิอากาศโดยปัจจัยธรรมชาติมี
ความหมายต่ออนาคตอย่างไร โดยการขับน้ำต้องการเปลี่ยนแปลงของภูมิอากาศ
อย่างไร เพื่อนำความรู้ที่มีความสำเร็จในการปรับ และการเปลี่ยนแปลงของภูมิอากาศไปใช้
วางแนวในอนาคตเพื่อเตรียมรับกับสภาพภูมิอากาศที่เกิดขึ้นและเพื่อ
สร้างความพร้อมกับผลกระทบที่เกิดขึ้นและร่วมกันหาแนวทางแก้ไข

1. การเปลี่ยนแปลงของภูมิอากาศตามธรรมชาติ

สภาพภูมิอากาศตัวระบบที่ และสภาพภูมิอากาศในช่วงยุคโดยซึ่งเป็นเนื้อหาที่
นำมาพิจารณาประกอบกับการเปลี่ยนแปลงของภูมิอากาศตามธรรมชาติและสร้างความ
แนวโน้มของการเปลี่ยนแปลงของภูมิอากาศไปทางบันไดในช่วง 100 - 10,000 ปีในอนาคต
เรียกว่าการเปลี่ยนแปลงของภูมิอากาศในช่วง 50 - 100 ล้านปีที่ผ่านมา มีลักษณะที่ต่อเนื่อง
มีอัตราการเปลี่ยนแปลงอย่างช้าสุด คือ 1 ปี/10 ล้านปี แนวโน้มเหล่านี้ทำให้โลกยุคต่างๆ การกล่าวถึงการคิดของภูมิอากาศในอดีตเป็นเพื่อหาข้อมูลเกี่ยวกับการเปลี่ยนแปลงของภูมิอากาศตามธรรมชาติในปัจจุบัน แม้กิจกรรมของมนุษย์เข้ามาเกี่ยวข้องกับการเปลี่ยนแปลงของภูมิอากาศในปัจจุบันมาก ในการศึกษาถึงการเปลี่ยนแปลงของภูมิอากาศที่เกิดขึ้นโดยธรรมชาติ 我們的計算結果表明，即使考慮到關閉的狀態，也無法充分地解释這類現象。
ชีกเจอหนึ่ง - แบ่งละติจูดกลางต่างส่วน ความร้อนจากหลังจากแนวอากาศยิป
เพิ่มขึ้นเล็กน้อยในภูฏร้อน (ตลอดในฤดูหนาว) การเพิ่มขึ้นของ
ความร้อนจากกรองอากาศยิปแผนที่ตั้งเป็นผลของเพิ่มที่เดิมกลางจาก
ชีกเจอหนึ่ง จะเพิ่มขึ้นอย่างมาก ๆ ในช่วงที่สูงภูฏร้อนในแถบ
แอริยะและแอฟริกา

- ตะลุยทุ่ง เป็นแนวใหม่ของการแบ่งต่างโดยธรรมชาติในอนาคต ไม่
น้อยกว่า 1,000 ปีที่ผ่านมา ความร้อนจากคงอากาศยิปต้อง
เลิกน้อยในภูฏร้อน (เพิ่มขึ้น ภูฏหนาว) หากมีความเปลี่ยนที่
ต่อเนื่อง อุณหภูมิไม่มากกว่า 0.2 °C ในช่วง 1,000 ปีถัดไป
- แนบฐานที่จะมีความเสี่ยงกว่าแนบและดึงมี

ชีกเจอได้ - ทุกระดับจะดีที่ดี ความร้อนจากคงอากาศยิปต้อง
เพิ่มขึ้นในภูฏหนาว

การเปลี่ยนแปลงของภูฏอากาศที่เพิ่มขึ้นจากก้าวเรียงระยะก้าวทาง
ควรจะหรือตรงกัน ความร้อนจากคงอากาศยิปที่จะคาดคะเนถึงการเปลี่ยนแปลงได้ แต่
การเปลี่ยนแปลงในช่วงระยะเวลานาน ๆ ปัจจัยที่ไม่สามารถคาดการณ์อย่างถูกต้องได้
ผลสะท้อนจากการเปลี่ยนแปลงของภูฏภูมิระดับโลกไม่เพียงกิน 0.5 °C. การเปลี่ยนแปลงใน
สภาพแวดล้อมจะต้องจากคงอากาศยิปสามารถต้องการสนับสนุนที่สำคัญต่อการเปลี่ยนแปลงของ
ภูฏอากาศในช่วงไม่กี่ชั่วโมงต่อไป แต่ยังจึงที่สำคัญคือการเรียงระยะก้าวทางให้มี
ความเป็นไปได้โดยธรรมชาติของภูฏอากาศในช่วงไม่กี่ปีที่ผ่านมา เช่น
ปรากฏการณ์เอลนีโญ (El Nino) การปรากฏของภูฏช้า ซึ่งปรากฏการณ์เหล่านี้ เพิ่มขึ้นไม่
เกี่ยวข้องกับการคาดการณ์การเปลี่ยนแปลงใน 1,000 ปีถัดไป การเปลี่ยนแปลงของภูฏภูมิ
รอบโลก โดยสภาพธรรมชาติไม่จำจะทำให้ภูฏภูมิเพิ่มขึ้นมากเกิน 1 °C ในช่วง 1,000 ปีถัดไป
2. การเปลี่ยนแปลงของสุภิลาชาจากกิจกรรมของมนุษย์

การสะสมของคาร์บอน dioxideที่ปล่อยออกมาตั้งแต่ 3 ปีจุใจหลัก คือ การเพิ่มขึ้นของประชากร ปริมาณการปล่อยคาร์บอน dioxideต่อคนและประสิทธิภาพของการใช้คาร์บอน dioxide ดังนี้

\[
\frac{\% \text{ของการเพิ่มขึ้นของ}
\text{ประชากร}}{x} = \frac{\% \text{ของการเปลี่ยนแปลงของ}
\text{การปล่อย}
\text{คาร์บอน dioxideต่อคน}}{x}
\]

รูปที่ 14.1 ปัจจัยหลักที่ทำให้เกิดการสะสมของคาร์บอน dioxide
2.1 การเพิ่มขึ้นของประชากร จำนวนประชากรที่อาศัยอยู่บนโลก ซึ่งมีความจำเป็นในการใช้เชื้อเพลิง สำหรับ อุตสาหกรรม การขนส่ง การทำความสะอาดภายในบ้าน จากการมาใหม่เชื้อเพลิง การใช้ที่ดินทำกินเพื่อการเกษตร การเจริญเติบโตของเมือง (การตัดไม้ทำลายป่า) จำนวนประชากรที่เพิ่มขึ้น 1.5 - 6 พันล้านคนในช่วง 100 ปีที่ผ่านมา ส่วนใหญ่จาก การเกษตร การแพร่พันธุ์ ซึ่งทำให้สภาพภูมิอากาศของมุมยุทธ์ขึ้น แนวโน้มอัตราการเจริญเติบโตของเมือง รายได้ของเมืองที่เพิ่มสูงขึ้น จำนวนประชากรที่เพิ่มขึ้น จาก 6,000 ล้านคนในปี 2000 อาจจะเพิ่มขึ้นเป็นเกือบ 11,000 ล้านคนในระหว่าง ปี ค.ศ. 2075-2100

![Population Graph](image.png)

รูปที่ 14.2 การเพิ่มขึ้นของจำนวนประชากรโลกในอนาคตจากการคาดการณ์ของ UN
2.2 การปล่อยคาร์บอนไดออกไซด์ คน ค่าเฉลี่ยของคาร์บอนไดออกไซด์ที่ปล่อยออกมากที่สุดคืออยู่ในระดับประมาณการอัดอากาศ ซึ่งเพิ่มความระวังและในอัตราการเร่งให้ได้มาซึ่งการแก้ไขมีจากอุตสาหกรรมและกิจกรรมของมนุษย์ค่อนข้างวัน (เช่น จากรถ เครื่องทำความร้อนและเครื่องปรับอากาศภายในบ้าน) การเปลี่ยนแปลงใหญ่ ๆ ที่เกิดขึ้นเช่น ในเอเชียตะวันออกเฉียงใต้เปลี่ยนจากเศรษฐกิจที่อุตสาหกรรมสูง อุตสาหกรรม บางการพัฒนาเปลี่ยนจากเศรษฐกิจการเกษตรสู่อุตสาหกรรม

2.3 ประสิทธิภาพของการใช้คาร์บอนไดออกไซด์ ในช่วงไม่กี่ศตวรรษถัดไป จะเป็นผลสดน้ำมันและก๊าซธรรมชาติ ขณะที่การใช้น้ำมันเร็วลดลง น้ำมันและก๊าซธรรมชาติซึ่งสัมพันธ์กับความสามารถของการผ่านก้านการพัฒนาของการใช้พืชของคาร์บอนไดออกไซด์ในบริบทภาษา

3. การคาดการณ์การเพิ่มขึ้นของคาร์บอนไดออกไซด์ในบริบทภาษา

กว่าสิบปี ระดับคาร์บอนไดออกไซด์เพิ่มขึ้นอย่างต่อเนื่อง ในอัตรา 1.5 ppm ต่อปี (0.4%) เพราะการเผาไหม้เชื้อเพลิงและการดัดไม่ทำลายป่า ทำให้เกิดการเพิ่มขึ้นอย่างต่อเนื่องและมีแนวโน้มที่จะเพิ่มมากขึ้นในอนาคต การเปลี่ยนแปลงที่เกิดจากการเผาไหม้เชื้อเพลิงเป็นตัว扮演游戏ของการปล่อยคาร์บอนไดออกไซด์ ทานฝุ่นคุณภาพดีส่วนใหญ่ถูกหายไปในช่วงต้นถึงอุตสาหกรรม ก่อนที่จะมีการใช้น้ำมันเชื้อเพลิงและก๊าซธรรมชาติ พบว่าทานฝุ่นคุณภาพดี เช่น ปิโตรเลียม ผลิตคาร์บอนไดออกไซด์ต่อนำการใช้พลังงานมาก เพราะฉะนั้นทานขึ้นเป็นปัจจัยหลักของการเพิ่มขึ้นของคาร์บอนไดออกไซด์รองโลก

การประมาณการปล่อยคาร์บอนไดออกไซด์ จากแบบจำลองการคาดการณ์การเพิ่มขึ้นของการปล่อยคาร์บอนไดออกไซด์ โดยใช้สมการของ IPPC ในการคาดการณ์คำนวณผลของการปล่อยคาร์บอนไดออกไซด์ที่เป็นไปได้ในปี 2100 และนักวิทยาศาสตร์ได้ติดแบบจำลองการคาดการณ์ไว้ในอนาคต การคาดการณ์ในรูปที่ 14.3 คำนวณของ IPPC โดยประมาณที่ใช้เห็นการที่สูงขึ้น แสดงให้เห็นแนวโน้มอัตราการปล่อยคาร์บอนไดออกไซด์สูงสุด ที่ปริมาณ 3-4 เท่าก่อนปี 2200 และ2300

200 GE 410
รูปที่ 14.3 การคาดการณ์ปริมาณการปล่อยคาร์บอนไดออกไซด์ในอนาคต

การประมาณการเพิ่มขึ้นของคาร์บอนไดออกไซด์ในบรรยากาศ บรรยากาศได้รับปริมาณการปล่อยคาร์บอนไดออกไซด์อย่างต่อเนื่องมากกว่าครึ่งของปริมาณการปล่อยคาร์บอนไดออกไซด์ที่ปล่อยออกมาในปัจจุบันนี้ คาร์บอนไดออกไซด์จะถูกกักเก็บหรือสะสมในมหาสมุทรหรือสิ่งมีชีวิต (รูปที่ 14.4 บน) ในระยะยาวภายในไม่กี่ร้อยปีที่ผ่านมาระดับคาร์บอนไดออกไซด์เพิ่มมากขึ้นในมหาสมุทรและสะสมสูงพื้นผิวมหาสมุทรซึ่งทำให้มีความเป็นการสูงขึ้นอย่าง (รูปที่ 14.4 กลาง) และกว่าหนึ่ง ดาราศาสตร์เป็นการดำเนินการเพิ่มเติมอย่างเช่นการการพัฒนาเป็นแคลเซียมคาร์บอมเลส (CaCO3) ที่พื้นผิวมหาสมุทร (รูปที่ 14.4 ล่าง) จากกระบวนการทางเคมีที่เกิดขึ้นอย่างเช่น นี้ทำให้เห็นว่าการสะสมสารของคาร์บอนไดออกไซด์ในมหาสมุทรทำให้พื้นผิวมหาสมุทรมีปริมาณความเปลี่ยนแปลงในอนาคต
b) Main components of the natural carbon cycle

- Atmosphere (720)
- Ocean (56,000)
- Geological Reservoirs

GEOLOGICAL RESERVOIRS

Kilometers

0 1 2 3 4 5

Transport in intermediate and deep waters

A Mixing into deep ocean (hundreds of years)

Pole

Dissolving CaCO₃ (thousands of years)

Ca²⁺ + 2HCO₃⁻ → CO₂ + H₂O

Equator

Pole
ความเข้มของคาร์บอน dioxide ต่ออากาศเพิ่มขึ้นเกินระดับ ในระยะยาวปริมาณคาร์บอน dioxide ที่ถูกดิ่งไปใช้โดยพิษภัยแผนหนึ่งอาจขัดขวางได้ 2 ปีจั้ง แต่พื้นที่มีการออกอากาศลดลงอย่างต่อเนื่อง และจำนวนการสะสมของคาร์บอน dioxide อาจจะลดลงในบางพื้นที่

ดังนั้นการเพิ่มของคาร์บอน dioxide ในบรรยากาศในอนาคต ซึ่งอยู่กับระดับคาร์บอน dioxide ที่เพิ่มขึ้นอย่างต่อเนื่องในบรรยากาศและการเคลื่อนตัวอย่างซ้าย ๆ สู่มหาสมุทรและสิ่งมีชีวิต (พืช) การคาดการณ์ไม่แน่นอนแหล่งน้ำมันเป็นปัจจัยในการคำนวณค่าเฉลี่ยของแผนหนึ่งของระดับคาร์บอน dioxide 2 แบบจำลองในการคาดการณ์ความเข้มของคาร์บอน dioxide สูงสุดในบรรยากาศแสดงให้เห็นในรูปที่ 14.5 ระดับต่ำสุดของคาร์บอน dioxide ที่เพิ่มขึ้นคือ 2 เท่าของก่อนยุคหลุยส์สหทธรรม (2xCO₂) ในช่วงใกล้ปี 2200 และเริ่มลดลง ระดับสูงสุดของคาร์บอน dioxide ที่เพิ่มขึ้นคือ 4 เท่าของก่อนยุคหลุยส์สหทธรรม (4xCO₂) ในช่วงใกล้ปี 2250 และเริ่มลดลง แบบจำลองการคาดการณ์ของคาร์บอน dioxide จากแผนหนึ่งการปล่อยเข้มข้นและลดลงอย่างรวดเร็ว

![Graph showing atmospheric CO₂ levels with scenarios](image-url)

รูปที่ 14.5 การคาดการณ์ความเข้มของคาร์บอน dioxide สูงสุดในบรรยากาศ
4. การคาดการณ์การเปลี่ยนแปลงของภูมิอากาศจากการเพิ่มขึ้นของคาร์บอนโคเอช์

ระดับคาร์บอนโคเอช์ที่เพิ่มขึ้นอย่างต่อเนื่องในอนาคตทำให้ภูมิอากาศโลกร้อนขึ้นอย่างต่อเนื่องชัดเจนเดี๋ยวกัน โดยมีการคาดการณ์ที่จะคำนวณและประมาณการร้อนขึ้นในอนาคตที่ค่อย ๆ เพิ่มขึ้นจาก 3 ปีจัด ถ้าจำนวนคาร์บอนโคเอช์ที่ปล่อยออกมาโดยมีสาเหตุจากมนุษย์ ระดับคาร์บอนโคเอช์ในบรรยากาศที่เพิ่มขึ้นกับการสะสมของคาร์บอนและความว้าของโลกคือระดับความเข้มข้นของคาร์บอนโคเอช์

การคาดการณ์เป็นการพิจารณาจากคำเฉลยของสถานะภูมิอากาศ จากสภาพภูมิอากาศในระยะนั้นจะทำให้เกิดการเปลี่ยนแปลงของภูมิอากาศของโลก การคาดการณ์ระดับความเข้มข้นของคาร์บอนโคเอช์ที่แพร่ใน การใช้การแก้ไขเป็นการแสดงคำเฉลยของคาร์บอนโคเอช์ที่เพิ่มขึ้นในอนาคตตั้ง รูปที่ 1.5 แสดงให้เห็นระดับคาร์บอนโคเอช์ที่เพิ่มขึ้น 2 เท่า (2XCO₂) จาก 275 ppm เป็น 550 ppm รูปที่ 1.6 แสดงการคาดการณ์โลกร้อนขึ้น 1.5-4.5° ซ. หรือประมาณ 2.5° ซ. และการคาดการณ์สูงสุดแสดงให้เห็นความสมดุลที่ระดับของคาร์บอนโคเอช์ที่ระดับ 4 เท่า (4XCO₂) โลกร้อนขึ้น 5° ซ. จากการบันทึกการเปลี่ยนแปลงของภูมิอากาศด้วยค่าปี ค.ศ. 1880-2000 ปรากฏว่า ในช่วงปีที่ร้อน คือ ช่วงปี ค.ศ. 1990 และ 1997 แต่ช่วงปีที่ร้อนที่สุด คือปี ค.ศ. 1998 ตั้งรูปที่ 14.7
รูปที่ 14.6 การคาดการณ์การเปลี่ยนแปลงของอุณหภูมิโดยสังเขปภายใน 500 ปี ค.ศ.

รูปที่ 14.7 การเปลี่ยนแปลงของอุณหภูมิตั้งแต่ ปี ค.ศ. 1880-2000

Source: U.S. National Climatic Data Center, 2001
การเปลี่ยนแปลงของภูมิอากาศมีต้นที่ปรกติของโลกราคีสัมมนา 3°C ในช่วงปลายคริสต์ศตวรรษที่ 21 คือ การปรับผันผวนของภูมิอากาศในแต่ละภูมิภาค ภูมิอากาศเป็นช่วงที่รุนแรงที่สุดและการเพิ่มขึ้นของระดับน้ำทะเล ซึ่งมีรายละเอียดดังนี้

การเปลี่ยนแปลงของภูมิอากาศในแต่ละภูมิภาค เนื่องด้วยการร้อนขึ้นโดยทั่วไปมีนัยสำคัญต่อการเปลี่ยนแปลงภูมิอากาศและภูมิอากาศ

จากแบบจำลอง GCMs คาดการณ์ถึงปริมาณฝนที่ตกเพิ่มขึ้น จากการที่อุณหภูมิเพิ่มสูงขึ้นในเขตคลื่นยุดศัตรู เนื่องจากมีฝนในอากาศมากและมีผลต่อภูมิอากาศของน้ำ

โลกร้อนขึ้นอาจมีผลต่อเขตคลื่นยุดศัตรู แม้การที่โลกร้อนขึ้นจะมีลักษณะเดียวกับ ๆ ร้อนขึ้นหรืออยู่ ยุคเปลี่ยนแปลงในเขตคลื่นยุดศัตรู ทั้งเช่น ลักษณะภูมิอากาศของอุ่นภูมิที่มีภูมิอากาศ เหมือนเสี้ยวโลก

ภูมิอากาศเป็นช่วงที่รุนแรงที่สุด จากการคาดการณ์ของภูมิอากาศอาจมีลักษณะที่รุนแรงที่สุด โดยพิจารณาจากปรากฏภูมิอากาศจากภูมิอากาศที่เกิดขึ้น ปัญหาภูมิอากาศของน้ำกลายเป็นเรื่องที่รุนแรงมากที่สุด ภูมิอากาศที่รุนแรงขึ้น เช่น ความรุนแรงและความผันผวนของการเกิดพายุซึ่งรอบและพายุในเขตคลื่นยุดศัตรู ซึ่งมีภูมิอากาศไม่แน่นอน ภูมิอากาศพื้นที่น้ำทะเลในเขตคลื่นยุดศัตรูเป็นสาเหตุของการเกิดพายุซึ่งรอบ เนื่องจากสภาพภูมิอากาศที่มีการเพิ่มขึ้น เขตร้อนที่ซึ่งยุดศัตรูเป็นภูมิอากาศที่อุ่นภูมิ ที่เขตร้อน-ศัตรูยุดศัตรูและมีแนวโน้มที่พายุจะเกิดบริเวณและยุดศัตรูมากขึ้น

การเพิ่มขึ้นของระดับน้ำทะเล ส่วนที่สัมพันธ์กับการเพิ่มขึ้นของระดับน้ำทะเลกับรูปแบบของภาคภูมิอากาศ ความร้อนทำให้ระดับน้ำเพิ่มขึ้นในเขตแม่น้ำภูเขาและกีฬา ซึ่งเป็นปรากฏการณ์ในช่วงระยะเวลาที่ยาวนาน และข้อมูลจากการสำรวจของน้ำเพิ่มขึ้นมากกว่าปริมาณน้ำตกของทิพายในเขตคลื่นยุดศัตรู ส่วนในเขตคลื่นยุดศัตรูตั้งแต่แนวโน้ตน้ำเขตร้อนที่ปกคลุมด้วยน้ำแข็งเริ่มมีผลต่อถึงระดับน้ำทะเลที่ 19 ความร้อนจึงทำให้ระดับน้ำทะเลเพิ่มขึ้น และปัจจัยหนึ่งที่ของการเพิ่มขึ้นของระดับน้ำทะเลที่เกิดจากการเพิ่มขึ้นของระดับน้ำทะเลที่เกิดจากการปรับผันผวนของภูมิอากาศที่เพิ่มขึ้น จากการประมาณสัดส่วนของระดับน้ำทะเลที่เพิ่มขึ้น 27 เซนติเมตร ในปี ค.ศ. 2100

206 GE 410
การเพิ่มขึ้นของระดับน้ำทะเลที่มีผลกระทบต่ออุณหภูมิของโลกร้อนอย่างชัดเจนและส่วนมากต่างกัน ทั้งนี้ขึ้นอยู่กับการเปลี่ยนแปลงของเปลือกโลก การนำน้ำใต้ดินไปใช้ การใช้ประโยชน์ที่ดิน ปัจจุบันมีประชากรที่อาศัยอยู่บริเวณชายฝั่งในระยะสูง 1 เมตรจากระดับน้ำทะเลปานกลาง มีประมาณ 100 ล้านคน โดยเฉพาะบริเวณที่มีประชากรมานาน เช่น กรุงเทพมหานคร เชียงใหม่ ดาบการ์ นิวออร์รี่ บางคคลาส ถ้าเกิดในสภาพที่ใช้ เช่นกรามาประเทศบัลกานที่ระดับน้ำทะเลเพิ่มขึ้นถึง 0.5 เมตร อาจมีการเคลื่อนย้ายประชากรที่อาศัยอยู่ในแถบนั้นถึง 17 ล้านคน

จากการคำนวณการเพิ่มขึ้นของระดับน้ำทะเลต่อ 1 เซนติเมตรจะทำให้แนวชายฝั่งภูกระดับไม่เปลี่ยนแปลง นอกจากนี้แล้วยังสามารถทำให้ไม่เกิดน้ำท่วม ผลต่อแหล่งน้ำสิ้นและพื้นที่ปลูกฝัง

5. การเพิ่มขึ้นของคาร์บอนไดออกไซด์ที่ระดับ 2 เท่า (2XCO₂)

การเพิ่มขึ้นของคาร์บอนไดออกไซด์ที่ระดับ 2และ 4 เท่าในยุคก่อนลูกสุกสารกรรม จากปุ๋ยที่ 14.8 คาร์บอนไดออกไซด์ที่ถูกบันทึกไว้ในแกนน้ำแข็ง Vostok ในแนวคาร์บิตา บอกถึงประมาณการบันทึกคาร์บอนไดออกไซด์เพิ่มมากกว่า 300-325 ppm ในช่วง 40,000 ปีที่ผ่านมา คาร์บอนไดออกไซด์ที่ระดับ 2XCO₂ = 560 ppm บริเวณใกล้เคียงกับเมื่อ 7 ล้านปีที่ผ่านมา ระดับความเยือกที่ 4XCO₂ (1120 ppm) เป็นไปได้และมีอยู่ตั้งแต่ 50 ล้านปีที่ผ่านมาและเป็นไปได้ว่าตั้งแต่ยุคคริสต์ศตวรรษ โลกอยู่ในภาวะเรือนกระจกเมื่อ 100 ล้านปีที่ผ่านมา
รูปที่ 14.8 ปริมาณคาร์บอนไดออกไซด์ ระดับ 2 และ 4 เท่า เปรียบเทียบกับข้อมูลในอดีต

รูปที่ 14.9 แสดงการคาดการณ์อุณหภูมิเพิ่มสูงขึ้นจากการปล่อยคาร์บอนไดออกไซด์ที่เพิ่มขึ้นโดยเปรียบเทียบกับข้อมูลในอดีต
จากการที่ 14.9 การปล่อยคาร์บอนไดออกไซด์จากกิจกรรมของมนุษย์เป็นปัจจัยไม่ระบบภูมิอากาศช่วงไม่กี่ร้อยปีปัจจุบันเมื่อเส้นทางภูมิอากาศมี 10 ล้านปีที่ผ่านมา ซึ่งเป็นการเริ่มต้นการประกอบการจากต้นที่เข้ามาสร้างระบบในอนาคต แผนการเสริมเปลี่ยนแปลงอย่างรวดเร็วช่วงไม่กี่ศตวรรษที่ผ่านมา แต่ละฝ่ายนั้นอาจมีส่วนใหญ่ใช้เวลาจากกว่า 1,000-10,000 ปีการเพิ่มขึ้นของคาร์บอนไดออกไซด์ ซึ่งกว่าเป็นเหตุให้เกิดการเปลี่ยนแปลง ระดับ 2XCO₂ ของโลก ระดับคาร์บอนไดออกไซด์ในปัจจุบันนับสภาวะการครับอนไดออกไซด์ที่สูงถึงระดับ 50 % และมากกว่าถูกท่องถูกพารามεεeeeeeee
ตรวจสอบ ระดับความเข้มข้นของคาร์บอนไดออกไซด์ในบรรยากาศ เหมือนเมื่อ 7 ล้านปีก่อนปัจจุบัน ฟิช vrdsott (สำนักและผู้ที่รู้จัก) อยู่ในขนาดแหน่งที่ซึ่งไม่สามารถตารางอยู่ได้ในระดับคาร์บอนไดออกไซด์ในปัจจุบัน ไม่จุดและเดินไม่ก็เท่าเป็นทุ่งหมู่ไม่แน่นแน่นเอง

การวินิจฉัยในศาสตร์วิทยาการเปลี่ยนแปลงรูปแบบของหยาดน้ำชาและการระเห็นของน้ำในแต่ละภูมิภาคเป็นสิ่งสำคัญ การระเห็นเพิ่มมากขึ้นรอบโลกเพราะลูกเห็บภูมิที่ร้อนขึ้นอยู่ในอากาศที่มีมากทำให้ระดับหยาดน้ำชาในรอบโลกเพิ่มมากขึ้น แต่ระบบที่แตกต่างกันในแต่ละภูมิภาค ซึ่งเกี่ยวกับน้ำแข็งเหล่านี้อาจจะมีอยู่ในทางตอนเหนือของ껏ั้นที่เริ่มเป็นผลจากการดิจิทดินเนอร์และที่สูงทำให้ลูกเห็บภูมิหนาวเย็นกลายเป็นน้ำแข็ง ปัจจุบันน้ำแข็งน้ำแข็งอยู่ในโลกในช่วง 250 องศา ทำให้กับน้ำแข็งน้ำแข็งอยู่ในช่วง 330 เมตร (หรือประมาณ 1,000 ฟุต) บริเวณรีบรอบ ภูมิที่น้ำแข็งเป็นผลตอบสนองต่อการเปลี่ยนแปลงของภูมิอากาศในช่วงไม่กี่ล้านปี หนึ่งในน้ำแข็งน้ำแข็งจากหลักฐานไม่มีแม่น้ำแข็งของอยู่ได้ในกรีนแลนด์ (Greenland) ก่อน 7 ล้านปีก่อนปัจจุบัน เพราะลูกเห็บภูมิที่ร้อนมาก โพนน้ำแข็งของกรีนแลนด์ที่อยู่ค่อนข้าง ผลของการร้อนขึ้นในอากาศแสดงให้เห็นการแปรปรวนของการระบายของน้ำแข็งที่ร้อนขึ้น 3 องศา บริเวณภูมิที่ร้อนของแผ่นน้ำแข็งจะยังคงอยู่เดิมอยู่แต่ละภูมิที่อยู่ร้อน ขอบเขตของแผ่นน้ำแข็งกรีนแลนด์จะละลายอย่างรวดเร็วในระดับ 2XCO2 เหมือนภูมิที่อยู่เสี่ยงภูมิที่อยู่ในแผ่นน้ำแข็ง การละลายทำให้ระดับน้ำทะเลสูงขึ้น

ในการตรวจสอบการพื้นผิวโลก กลุ่มน้ำแข็งในแนวตะวันตกโลก (Western Antarctic) ไม่เพียงพอเมื่อ 5-10 ล้านปีก่อนแล้วยังคงอยู่กว่าที่เป็นอยู่ในปัจจุบัน ทุกวันนี้ความหนาใจของแผ่นน้ำแข็ง และบางส่วนที่ลูกเห็บภูมิที่ร้อนขึ้นจากการระดับ 2XCO2 ยังมีการสะสมของน้ำในแต่ละปี นอกจากการระดับที่ไม่เป็นที่อยู่ให้เริ่มต้นน้ำแข็ง แผ่นน้ำแข็งของ อย่างรวดเร็วกับการระดับน้ำทะเลที่เพิ่มสูงขึ้น แผ่นน้ำแข็งจะเร้า ที่แนวตะวันตกของแนวภูมิ คลิกโยกล้มลงกับเมื่อ 10 ล้านปีก่อนปัจจุบัน บริเวณเหล่านี้ของแผ่นน้ำแข็งของแนวภูมิที่จะมีความถูกต้อง เพราะระดับความร้อนของภูมิที่เพิ่มสูงขึ้น ทำน้ำแข็งเหล่านี้มวลภูมิที่เพิ่มสูงขึ้นไหลออกจากแผ่นพื้นทรัพยา จากหลักฐานแผ่นน้ำแข็งของ

210
แดนคาร์บิดจะว่าที่เริ่มต้นจากการละลายถึงกึ่ขุยจาก 2XCO₂ ของโลกทำให้ระดับน้ำทะเลเพิ่มสูงขึ้น

จากแผนภูมิของ IPCC ซึ่งสะท้อนให้เห็นการเพิ่มขึ้นของการละลายของภูเขา
น้ำแข็ง แผ่นน้ำแข็งกรีนแลนด์ และอาจเป็นไปได้ที่ขอบเขตของแผ่นน้ำแข็งแผ่นคาร์บิเดจะวันตกอย่าง อัตราระดับน้ำทะเลที่เพิ่มขึ้นเป็น 2 เท่า จาก 1.5-3.0 ลิตรเมตรต่อปี ในขั้นตอนสุดท้าย หรือ 1 ศตวรรษ อัตราการเพิ่มขึ้นของระดับน้ำทะเล 30 เซนติเมตร (ประมาณ 1 ฟุต)

6. การเพิ่มขึ้นของคาร์บอนโดออกไซด์ที่ระดับ 4 เท่า (4XCO₂)

โดยแบบจำลองความเข้มข้นของคาร์บอนโดออกไซด์เพิ่มปริมาณมากขึ้นมากกว่า 4-5 เท่า ก่อนยุคการแสดงธรรม ระหว่างปี 2200-2300 กลายเป็นการเปลี่ยนแปลงขนาดใหญ่ 4XCO₂ ใน 200-300 ปี ในอนาคตคิดแน่นอนของโลกอันเนื่องจากเปลี่ยนแปลงสภาพแวดล้อมเพิ่มปริมาณ ออกซิเจน 50-100 ล้านปีก่อนปัจจุบันที่ระดับคาร์บอนโดออกไซด์สูงขึ้น ระดับ 4-5 ถึง 7 เท่า ที่โลกเริ่มต้นทำให้น้ำแข็งที่อยู่บน 660 เมตร (มากกว่า 2,006 ฟุต) ที่คาร์บอนโดออกไซด์เพิ่มขึ้น 4X CO₂ ขึ้นโลกอาจขัดขวางสะพานดูด ทำให้น้ำแข็งระดับ ความร้อนเป็นเหตุให้ความร้อนผ่านยางสูงทำให้ผิวน้ำทะเลสูงขึ้น 1-2 เมตร น้ำทะเลที่อยู่บริเวณที่ภูมิผิวที่ราบภูมิภาคแคริบีียน ที่ด้าน

แม้ว่าความร้อนที่เกิดจากการคาร์บอนโดออกไซด์ที่เพิ่มขึ้นของน้ำแข็งจะสูงขึ้น แต่แผนภูมิของน้ำแข็งก็จะต่อเนื่องถึงการเกิดการละลายของน้ำแข็งในอนาคตที่จะเกิดขึ้น น้ำแข็งในดิน หรือ越好ทุมราชาและแนวป่าเสนอคืออย่างข้า ถูกลดลง ภูมิอากาศที่ต่ำลงทำให้เกิดการพังทลายหรือละลายของแผ่นน้ำแข็ง แผนภูมิคาร์บอนโดออกไซด์ที่อย่างรวดเร็วในช่วงกว่า 50-200 ปี และ Ross Ice Shelf ในช่วง 200 ปีจะถูกทำให้ระดับน้ำทะเลเพิ่มขึ้น 60-120 เซนติเมตร/100 ปี และการที่จะมีอยู่ช่วงไม่แน่นอนคาร์บิดในช่วงที่อุณหภูมิโลกเพิ่มขึ้นสูงสุด 8 องศา ทำให้เกิดผลในชีวิตต่อการเพิ่มขึ้นของระดับน้ำทะเล
7. ผลกระทบจากการเปลี่ยนแปลงภูมิอากาศ

จากการเปลี่ยนแปลงอุณหภูมิของโลกซึ่งมีแนวโน้มสูงขึ้นเรื่อย ๆ ส่งผลกระทบต่อระบบภูมิอากาศโลก การเปลี่ยนแปลงระดับน้ำทะเล เกิดการผันผวน และความหลากหลายทางชีวภาพ ทั้งจากการปฏิสนธิ การอุณหภูมิโลก รวมถึงผลกระทบต่อสภาพแวดล้อมและสังคมด้วย

7.1 ผลกระทบต่อระบบภูมิอากาศโลก

การเปลี่ยนแปลงของภูมิอากาศทำให้การเปลี่ยนแปลงของภูมิอากาศโลกแตกต่างกันไปในแต่ละภูมิอากาศ การเปลี่ยนแปลงอุณหภูมิในส่วนของโลกไม่ทำกันโดยส่วนที่อยู่ใกล้สันด้วยสูตรการเปลี่ยนแปลงน้อย แต่ละภูมิอากาศเพื่อในส่วนที่อยู่ละติจูดสูงและใกล้ขั้วโลก ค่าเฉลี่ยของอุณหภูมิโลกเพิ่มขึ้น 2.5° ซ. จากการเพิ่มขึ้นของคาร์บอนไดออกไซด์ที่ระดับ 2 เท่า และอุณหภูมิเฉลี่ยประจำปีบริเวณละติจูดสูงเพิ่มขึ้น 3.25° ซ. การเปลี่ยนแปลงของภูมิอากาศมีผลต่อถูกต้องมากกว่าถูกต้อง เช่น อุณหภูมิที่เพิ่มขึ้น 4.25° ซ. ในฤดูหนาวบริเวณละติจูดสูง การเปลี่ยนแปลงภูมิอากาศมีผลกระทบต่อระบบภูมิอากาศโลกทำต้านชั่วเวลาภูมิอากาศถูกภูมิ ปริมาณแหว่งและการเกิดพายุ

รูปที่ 14.10 ปริมาณอุณหภูมิที่เพิ่มขึ้นมากในอุณหภูมิโดยละติจูดสูง ซึ่งมีสาเหตุจากการระดับการระเหยคาร์บอนไดออกไซด์ที่เพิ่มสูงขึ้น
7.1.1 ผลกระทบต่อชั้นบรรยากาศ พบว่าในชั้นเสตรโดสเฟียร์ อุณหภูมิต่ำส่งการลดลงของออกซิเจน (O₂) ในชั้นบรรยากาศ ปริมาณแผงงานแสงอาทิตย์ที่ถูกขึ้นไปในชั้นเสตรโดสเฟียร์จึงลดลง ในขณะที่ชั้นโทรโพสเฟียร์อุณหภูมิต่ำสุดส่วน

7.1.2 ผลกระทบต่อภูธุกภัณฑ์ในและภูธุภูมิของสังคม การปรับตัวองค์กรเพื่อการเคลื่อนไหวของภูธุกภัณฑ์ ที่เพิ่มขึ้น 2 เท่า มีผลต่อการเคลื่อนไหวของภูธุภักดิ์ คือ เตือนภัยในอนาคตจะมีผลกระทบและเสียหายต่อทรัพยากรในปัจจุบัน และต่อผู้รู้ศึกษาในอนาคตจะมีการเปลี่ยนแปลงและเสียหายต่อคุณภาพในปัจจุบัน ตูร์ร้อนที่ข้ามกว่าปกติ 2 เท่า ในขณะที่ภูธุกภัณฑ์ส่วนและมีสภาพรุนแรงในยุค

![Diagram showing temperature changes](image)

รูปที่ 14.11 การเปลี่ยนแปลงระยะเวลายาวของภูธุกภัณฑ์ภูธุกภัณฑ์และภูธุภักดิ์จะสามารถในการเปลี่ยนแปลงภูธุกภัณฑ์และภูธุภักดิ์

7.1.3 ผลกระทบต่อปริมาณน้ำฝน ฝนเป็นแหล่งที่มาของน้ำในโลกที่สำคัญ สำหรับการดำรงชีวิตของมนุษย์ ดังนั้นต้องจัดการกับการเพาะปาะและสิ่งแวดล้อมอื่นอีกมากมาย ดังนั้น การเปลี่ยนแปลงปริมาณของฝนที่ลดลงจะมีผลกระทบต่อ
มนุษย์ทั้งทางตรงและทางอ้อม เมื่อโลกยังชีพอยู่ 2-3 องศาเซลเซียส จะมีผลต่อสภาพภูมิอากาศ โดยจะมีการเปลี่ยนแปลงมากในพื้นที่ที่อยู่ในคลื่นดุสูงและใกล้ชาติโลก การเพิ่มขึ้นของอุณหภูมิจะทำให้อับอากาศกลายเป็นไอของน้ำสูงขึ้น ปริมาณแฝดลไซของโลกจะสูงขึ้น ซึ่งผลของการเพิ่มปริมาณน้ำจะเพิ่มมากในฤดูหนาว

การเพิ่มขึ้นของฝนโดยทั่วไปจะเกิดในพื้นที่ที่อยู่ในและติดกับสูง โดยเฉพาะในฤดูหนาวจะเห็นการเปลี่ยนแปลงได้ชัด ภูมิอากาศเย็นจะทำให้เกิดฝนตกน้อยจากลมมรสุมมากขึ้น และบริเวณที่อยู่ใกล้เขตร้อนของโลกจะมีการเปลี่ยนแปลงของปริมาณฝนโดยอาจจะเพิ่มหรือลดลงเล็กน้อย

การเปลี่ยนแปลงของน้ำฝนและการระเหิดของน้ำหนัก รองลงมาจะต่อเนื่องไปยังระดับน้ำจืด การเปลี่ยนแปลงระดับน้ำและอุณหภูมิของน้ำมีผลต่ออิทธิพลการยุ่งยุ่มและการเจริญเติบโตของพืชมาชินิต ในขณะที่การเปลี่ยนแปลงการไหลของน้ำและปริมาณน้ำฝนจะส่งผลต่อปริมาณน้ำในแหล่งน้ำจืด และคุณภาพของน้ำในด้านการละลายของออกซิเจนและสารอาหารในน้ำที่มีผลต่อสิ่งมีชีวิตทุกชนิดที่ต้องพึ่งพาแหล่งน้ำนั้น

7.1.4 ผลกระทบต่อการเกิดพายุ เมื่อความร้อนของโลกเพิ่มขึ้นมีผลทำให้น้ำแข็งที่ชั้นโลกละลายกลายเป็นกระแสน้ำเย็น ทำให้กระแสน้ำเย็นนี้มีมวลและปริมาณมากขึ้นและจะไหลตามแนวเครียดของโลกเสียดสู่ทิศที่เป็นกระแสน้ำอุ่น มีผลทำให้อาคารค่อนไหวคือบริเวณที่กระแสน้ำจับต้องบริเวณกันนี้ยอดดับสูงขึ้น ขณะที่อาคารเรือนใยเข้ามาแทนที่ก่อให้เกิดพายุที่มีความรุนแรง การเปลี่ยนแปลงสภาพอากาศจะมีผลทำให้เกิดพายุปอร์ครั้งขึ้น ซึ่งจะทำให้เกิดความเสี่ยงหายจากการเกิดน้ำท่วมตามมา

7.2 ผลกระทบต่อการเปลี่ยนแปลงระดับน้ำทะเล

ในปี ค.ศ. 2030 โลกจะมีอุณหภูมิสูงขึ้น 0.5-2.5 องศาเซลเซียส การเพิ่มขึ้นของอุณหภูมิค่อนต่อกันนี้เมื่อ 120,000 ปีมาแล้ว ผลที่เกิดจากการที่โลกมีอุณหภูมิสูงขึ้นอย่างหนึ่งที่คือการระดับน้ำทะเลสูงขึ้น เกิดเนื่องจากการขยายตัวของน้ำทะเล และการละลายของอุบัตาน้ำแข็ง และแผนนำเข็งจากใหญ่ในภูมิศาสตร์และแอนตาล็ก การละลายของน้ำแข็ง

214 GE 410
ที่อยู่ในเขตติดต่อกลางถึงสูง มีอยู่ไม่ถึง ร้อยละ 1 ของน้ำแข็งทั้งหมดในโลก มีผลทำให้ระดับน้ำทะเลเพิ่มขึ้นถึง 30-60 เซนติเมตร และในปี ค.ศ. 2030 ระดับน้ำทะเลจะสูงขึ้น 14-24 เซนติเมตร โดยมีอัตราการเพิ่มขึ้นประมาณ 4-6 มิลลิเมตรต่อปี ถ้าการเพิ่มเติมนี้เร็วกว่าเมื่อร้อยปีที่ผ่านมา 2-6 เท่า (วิศวกรรมพื้นฐาน, 2543, หน้า 3-22) ระดับน้ำทะเลในแต่ละพื้นที่อาจเพิ่มสูงขึ้นไม่เท่ากันเนื่องจากผลจากการเปลี่ยนแปลงของกระแสน้ำในมหาสมุทร

การชะแลงของน้ำของแม่น้ำต่างๆ ที่มีอยู่ประมาณร้อยละ 90 ของปริมาณน้ำแข็งทั้งหมดในโลกมีผลทำให้ระดับน้ำทะเลของโลกสูงขึ้นประมาณ 80 เมตร จะทำให้เมืองและที่อยู่หลักของโลกเกิดน้ำท่วม (วิศวกรรมพื้นฐาน, 2543, หน้า 3-22-3-23)

สาเหตุสำคัญที่ทำให้ระดับน้ำทะเลสูงขึ้น คือการขยายตัวของหิมะน้ำทะเลเมื่อได้รับความร้อนมากขึ้น โดยมีการชะแลงของน้ำทะเลนี้ชี้ให้เห็นว่าโลกเป็นตัวผสมผสานผลภัณฑ์ ผลกระทบจากการระดับน้ำทะเลเพิ่มสูงขึ้นอาจส่งผลกระทบในวงกว้าง โดยพื้นที่ต่อเนื่องมีโอกาสจะได้รับผลกระทบไม่เท่ากัน พื้นที่ที่มีความเสี่ยงสูง คือ พื้นที่ที่อยู่สูงจากระดับน้ำทะเลไม่มาก โดยเฉพาะบริเวณชายฝั่งของประเทศก้าวหน้าซึ่งมีภูมิภาคที่มีชั้นความสามารถในการปรับตัวค้า

ผลจากการเพิ่มขึ้นของระดับน้ำทะเลจะทำให้เกิดน้ำท่วมพื้นที่ลุ่มชายฝั่งทะเลหรือใกล้ชายฝั่งทะเลตลอดทุกพื้นที่ ซึ่งมีพื้นที่ประมาณ 859,000 ตารางกิโลเมตรประเทศที่เป็นภูมิภาคละตูไนพื้นที่เป็นอันมาก เช่น หมู่เกาะมอลติเซส อยู่เหนือกว่าระดับน้ำทะเลเพียง 2-3 เมตร การเกิดการย้ายอีกฐานของตน ฟิช และสัตว์น้ำเข้าไปอยู่ในพื้นที่ปากแม่น้ำ คุณภาพของน้ำจะเลวลง เนื่องจากน้ำท่วมที่จะไปทำให้น้ำทะเลมาสู่พื้นที่ปากแม่น้ำ และแบ่งเปลือกฟักน้ำสัตว์พืชและสัตว์น้ำที่อยู่บริเวณชายฝั่งทะเลแต่ละพื้นที่ที่มีภูมิภาคต้องเวลาการไหลเข้าของน้ำทะเลสูงขึ้นติดและการเพิ่มขึ้นของระดับน้ำทะเลจะส่งผลกระทบต่อการพึ่งความมั่นคงและความมั่นคงของการเกิดพื้นที่ยุโรปและแalement ในบริเวณนี้ นอกจากการเพิ่มขึ้นของระดับน้ำทะเลจะทำให้เกิดผลกระทบต่อเศรษฐกิจของประชาชนในประเทศที่ได้รับผลกระทบด้วย เช่น การสูญเสียทรัพยากรจากการทำน้ำท่วมและพายุ และการสูญเสียจากค่าใช้จ่ายในการป้องกันภัยจากการเพิ่มขึ้นของระดับน้ำทะเล ผลกระทบจากการเปลี่ยนแปลงของลูกเหยือกที่ตูไนต่อเขตชายฝั่งทะเล

GE 410
พื้นที่ที่ได้รับผลกระทบแล้ว ได้แก่ พื้นที่ชุมชนซึ่งมีความดุนดันสมบูรณ์มากกว่าเรื่อง
อ่าว Chesapeake และพื้นที่ปากน้ำของแม่น้ำนิดซิชชัปปีนิรภัยดูแลช่วยให้ประเทศจูรมีวิกฤต
และประเทศจูรมี แหล่งการอยู่ในภาพที่สูงกว่าพื้นที่ต่างๆ ที่อยู่
ประชากรกว่า 12,000 คน ไปอยู่ที่ประเทศนิวซีแลนด์เป็นการยาว

ข้อเสนอแนะจากบริษัทนา忏ลูดสูงขึ้นอีก 1 เมตร พื้นที่ของประเทศต่าง ๆ อาจจะ
จะหายไป ดังนั้นดีรกว่าจะหาในปีละ 0.05 ปีปัจจุบัน รายละ 1 แซนด์แลนด์ รายละ 6 บังคลา
ทีค รายละ 8 และบางประเทศที่สูงกว่าอาจลดลงถึงก็ร้อยละ 80 สิ่งเหล่านี้อันจะทำให้ขึ้น
ความเสี่ยงอยู่เป็นข้อความมากในส่วนที่อยู่อาศัย ระบบนิเวศยังคงต้องการที่จะอยู่ใน
ท้องทะเลและพื้นที่เกษตรกรรม เป็นต้น

7.3 ผลกระทบต่อเกษตรกรรม

การเพิ่มขึ้นของคาร์บอนไดออกไซด์ในบรรยากาศ ส่งผลให้พืชเจริญเติบโต
dีมากขึ้น ซึ่งจะมีการเพิ่มอัตราการสูญเสียผลผลิต
การเพิ่มขึ้นของคาร์บอนไดออกไซด์มีผลทำให้เกิดการพื้นที่ของอุณหภูมิ ปริมาณ
ฝนและความเหงาอย่างมาก ๆ ที่มีความเกี่ยวข้องกัน ซึ่งมีผลต่อการเจริญเติบโตของพืช

การเพิ่มขึ้นของอุณหภูมิจะมีผลต่อการเกษตร เขื่อ ทำให้เกิดการเปลี่ยนแปลง
ทางด้านระยะเวลาของการเจริญเติบโต โดยในขณะที่จะมีระยะเวลาของการเจริญเติบโต
ของพืชมากขึ้น การเปลี่ยนแปลงทางด้านผลผลิต และเกิดการเปลี่ยนทดานทางของ
การเกษตรตามสภาพภูมิศาสตร์ การเปลี่ยนแปลงด้านผลผลิตนั้น จะเกิดการเปลี่ยนแปลงใน
ภูมิอากาศที่อยู่ในและใช้สูงต่างกันภูมิอากาศที่อยู่ในและความที่ต่าง
เนื่องจากการเปลี่ยนแปลงของ
อุณหภูมิจะเกิดขึ้นในภูมิอากาศที่อยู่ในและใช้สูงต่างกัน

การเพิ่มขึ้นของระดับน้ำทะเลถูกเป็นปัญหาต่ออุณหภูมิทางการเกษตร โดยเกิด
การทวมและเกิดน้ำทะเลจนสูงด้านกว้างและแหล่งน้ำใต้ดิน มีผลต่อผลผลิตทาง
การเกษตร (วิศวกุณ คุณธรรมโพธิ์ yaw 247, หน้า 3-23-3-28)

หากโลกร้อนขึ้น 1-3.5 องศาเซลเซียส อัตราการระเหยของน้ำจะเพิ่มสูงขึ้น ทำให้
ความชื้นในดินลดลง พื้นที่ชื้นมีปัญหาเกี่ยวกับอยู่แล้วจึงได้รับผลกระทบในช่วงเวลาที่
ย่านนี้ ทำให้ผลลิตต่อไปของพืชในเขตบูรณาการ ที่พื้นที่ทางการเกษตรที่สำคัญบางแห่ง เช่น พื้นที่รับสู่มีเรียก โดอิโวสดุสูงจะได้รับผลกระทบจากการทำความแห้ง

ภูมิอากาศที่เปลี่ยนแปลงไปจะส่งผลให้รูปภูมิอากาศและสภาพภูมิอากาศในภูมิภาคอยู่ในปัจจุบันผลล่างเข้าไปทางขั้วโลกเป็นระยะเวลาระหว่าง 150-550 กิโลเมตร แต่บ้านพื้นที่เกษตรกรรมที่อยู่ระหว่างระยะต้องของเขตอยู่สูงกว่าขั้วโลก เช่น บริเวณชิกโลกเหนือ อาทิ ภาคเหนือของมหาดไทย แถบตนเองิมมิวัย รังสีคาย และญี่ปุ่น บริเวณชิกโลกใต้ อาทิ ทางตอนใต้ของซิตี้และอีเวนจิตา อาจจะได้รับประโยชน์จากการเปลี่ยนแปลงสภาพภูมิอากาศ

นอกจากนี้ยุคภูมิอากาศที่เพิ่งสุขเชื่อม อาจเป็นประโยชน์ต่อการเจริญเติบโตและความแข็งแรงของพืชบางชนิด แต่ขณะเดียวกันก็อาจส่งผลเสียต่อพืชบางชนิด เช่น เซลสะพบ กับบุหรี่ค่ำไป วิชช์ข้าวฟาร์มจากจะเริ่มขึ้นไปยังเขตบูรณ์

พื้นที่ที่มีความเสี่ยงจะได้รับผลกระทบสูง ได้แก่ เอกฟาร์ม เอกชัยได้ เอก ครัวนอก เอกชัยตะวันออกเฉียงใต้ เขตกะทูนในแนวที่ทางธารทาง และบางประเทศใหญ่มุ่งการแปรใช้

ส่วนกลุ่มประชากรที่มีความเสี่ยงสูง ได้แก่ กลุ่มไร่ที่ทำภูมิ กลุ่มคนยากจน กลุ่มที่อยู่ใกล้เคียง และกลุ่มที่เสียบริบททางการค้า นอกจากนี้ยังสามารถส่งไปได้สำเร็จของการขับเคลื่อนข้าวสารและเทคโนโลยี รวมถึงข้อจับย่อยทางการเมือง จะทำให้การปรับตัวเพื่อแก้ปัญหาต่อผลกระทบในด้านเกษตรกรรมเหล่านี้เป็นไปได้ยากจากกลุ่มบางขั้น

7.4 ผลกระทบต่อการประมง

การเปลี่ยนแปลงของกระแสความร้อนและการเส้น้ำเป็น ส่งผลให้จำนวนสัตว์น้ำในมหาสมุทรลดจำนวนอย่างมาก เนื่องจากภูมิอากาศที่เปลี่ยนแปลงไปนั้นส่งผลกระทบต่อการไหลของกระแสความร้อนและการระดับน้ำในมหาสมุทร และกระทบต่อความอยู่เฉยสูงของสัตว์น้ำ เช่น แหล่งคุณค่า ปริมาณกระแสเส้น้ำและน้ำซึมในพื้นทะเลจ้าวราชอินทร์ 70 หมู่ที่ 2493 ส่งผลให้จำนวนปลาในมหาสมุทรลดลง และทำให้เกษตรจ้าวแรมขาด
จำนวนอย่างเห็นได้ชัด
ประชากรประชาชนในมหาสมุทรแปซิฟิกตอนเหนือได้ลดจำนวนลงอย่างมากในช่วงปี พ.ศ. 2540-2541 ซึ่งเป็นช่วงที่รัฐบาลอย่างติดติด นักวิทยาศาสตร์ได้คาดกันว่าในช่วงกลางเดือนมกราคมอาจจะไม่มีฟิชที่ใด ๆ บนมหาสมุทรแปซิฟิกที่เย็นพอสำหรับประชากรเองมีสิ่งต่อไป

ผลผลิตประมวลของโลกโดยรวมอาจไม่เปลี่ยนแปลงไป เพราะผลกระทบต่าง ๆ จะเกิดในระดับประเทศหรือห้องที่ ถ้ามีการเปลี่ยนแปลงพันธุ์ปลาโดยอ่าย
สถานที่เพราะเปลี่ยนหรือเปลี่ยนพื้นที่ทำประมง

7.5 ผลกระทบต่อระบบนิเวศและความหลากหลายทางชีวภาพ

สิ่งมีชีวิตในโลกมีการอยู่ร่วมกันในลักษณะต่าง ๆ เช่น การอยู่ร่วมกันในลักษณะและการเกิดขึ้น การส่งเสริม การระดับฟิชพะเป็นต้น โดยมีผู้ผลิต ผู้บริโภค ผู้อยู่สกัด และผู้สิ้นสุด นอกจากรัฐบาลจะมีความสัมพันธ์กับผลการผลิตของสิ่งมีชีวิตยังมีอยู่กับสภาพแวดล้อมที่เป็นตัวกำหนดการระดับ ๆ ของสิ่งมีชีวิตและชนิดแตกต่างกันไปตามชนิดของสิ่งมีชีวิตนั้น ๆ ถ้าพิจารณาการขีดข่วนของชุดเหตุผลโดยออกไซซ์จะเกิดผลกระทบต่าง ๆ มากมาย เช่น เกิดการเพิ่มขึ้นของอุณหภูมิ และสภาพภูมิอากาศต่าง ๆ การเพิ่มขึ้นของระบบน้ำทะเลตลอดจนการเพิ่มขึ้นของการขีดข่วนออกไซซ์จะมีผลต่อการเจริญเติบโตของพืช การเปลี่ยนแปลงสภาพภูมิอากาศจะส่งผลกระทบต่อระบบนิเวศ ซึ่งจะส่งผลกระทบต่อสิ่งมีชีวิตที่เกี่ยวข้อง โดยอภิปรายการจัดการทางตรงทางอ้อม

การเพิ่มขึ้นของการขีดข่วนออกไซซ์ มีผลต่อการเปลี่ยนแปลงอุณหภูมิและสภาพภูมิอากาศจะมีผลต่อระบบนิเวศตามธรรมชาติของพืชและสัตว์ที่ไม่สามารถหลีกเลี่ยงได้ การเปลี่ยนแปลงการเจริญเติบโตของพืชต่างช่วงการเจริญเติบโตจะมีระยะเวลาน้ำการเจริญเติบโตทำให้ผลผลิตของออกไซซ์แม่ลิฟท์และการผลิตของออกไซซ์จะมีผลต่อสิ่งมีชีวิตที่กินอาหารจากพืชและสัตว์ที่เจริญเติบโตของพืชที่วัตถุระเหยชักกัน ในเขตที่ค่อนข้างแห้งแล้งจะมีไฟฟ้าเป็นตัวควบคุมโดยไฟฟ้าจะเกิดจากกระชูก และป้องกันการขีดข่วน

อุณหภูมิที่เพิ่มขึ้นระหว่าง 1-3.5 องศาเซลเซียสในอีก 100 ปีข้างหน้าจะทำให้เขตภูมิอากาศปัจจุบันเปลี่ยนแปลงไปโดยเฉพาะในพื้นที่เขตอุ่น ซึ่งมีชีวิตที่อยู่อาศัยใน

218

GE 410
ระบบวิเคราะห์จะมีการปรับตัวให้เข้ากับสภาพภูมิอากาศใหม่ หากรัฐมีข้อรับ-->เห็นไม่สามารถปรับตัวได้ก็อาจจะนำไปสู่การพยายามย้ายฐาน หรือสูญพันธุ์ในที่สุด นอกจากนี้การตั้ง
ล่ามการเปลี่ยนแปลงสภาพภูมิอากาศแล้ว ปัจจัยที่ส่งผลต่อการปรับตัว การเจริญเติบโต และ
การกระจายตัวของสัตว์ชีวิต ได้แก่ ปัญหาการตัดไม้ทำลายป่า และปัญหาสิ่งแวดล้อมอื่น ๆ

นอกจากนี้ ถูกสภาพเจริญเติบโตของทุ่งหญ้าอันเป็นแหล่งอาหารสำคัญของการทำ
ปรู้สีและสัตว์ป่ากว่าร้อยละ 50 ของโลก อาจจะเปลี่ยนแปลงไป อุณภูมิและปริมาณน้ำฝน
ที่เพิ่มขึ้นจะเปลี่ยนแปลงแนวเขตชีวิตของทรงหญ้า ป่าแม่ม่า ป่าไม้ และระบบนิเวศอื่น
 ๆ ในเขตตระหนัน

พื้นที่ชุ่มน้ำบริเวณแหล่งที่อยู่อาศัยและแหล่งขยายพันธุ์ที่สำคัญของพืชและสัตว์
แหล่งปรู้สีป่า คุณภาพน้ำ รวมทั้งความคุ้มกันและสภาพแวดล้อม อาจมีพื้นที่ลดลง เพราะ
อุณภูมิที่สูงขึ้นจะทำให้น้ำมีคุณค่าจะเจริญพืชที่ชุ่มน้ำมีขนาดเล็กลง

อุณภูมิและอัตราการระเหยของน้ำที่เปลี่ยนแปลงไปนี้ อาจมีผลต่อคุณภาพและ
ความหลากหลายของพันธุ์พืช ดำนูตร์ตัวในระบบนิเวศเป็นอย่างมาก

7.6 ผลกระทบต่อทรัพยากรป่าไม้

อุณภูมิเฉลี่ยของโลกที่เพิ่มขึ้นเพียง 1 องศาเซลเซียสในศตวรรษที่ 21 มีผลต่อ
โครงสร้างและองค์ประกอบทางนิเวศของป่าเป็นอย่างมาก กล่าวคือ ป่าไม้ในสามของโลกจะ
ได้รับผลกระทบจากปรากฏการณ์นี้ บางชนิดอาจหายไป ในขณะเดียวกันอาจเกิดโครงสร้าง
และองค์ประกอบทางนิเวศของป่าไม้ปรากฏในองค์ขึ้นได้ นอกจากนี้ จำนวนมากต้นพืชที่จะมี
ปริมาณและความรุนแรงที่สูงขึ้น ป่าไม้ที่มีความเสี่ยงสูงจะได้รับผลกระทบจากการ
เปลี่ยนแปลงสภาพภูมิอากาศได้แก่ ป่าทำฝ่าทะเลเขตร้อน ป่าในเขตอุตุนิยมวิทยา

7.7 ผลกระทบต่อสุขภาพ

การเปลี่ยนแปลงสภาพภูมิอากาศ อาจมีผลต่อสุขภาพของมนุษย์ในบริเวณกว้าง
เนื่องจากสุขภาพเป็นอยู่กับอากาศที่เพียงพอ น้ำดื่มที่สะอาด ที่อยู่อาศัย สภาพลักษณะที่ดีและ

GE 410 219
สิ่งแวดล้อมที่เหมาะสมในการควบคุมเชื้อโรคติดต่อ การเปลี่ยนแปลงสภาพภูมิอากาศสามารถส่งผลกระทบต่อปัจจัยเหล่านี้ได้

การเปลี่ยนแปลงของภูมิอากาศจะทำให้เกิดกิจกรรมทางไ-supportive ความที่ป่วยขึ้น และรุนแรงมากขึ้น เช่น มีผู้เสียชีวิตจากคลื่นเร็วความร้อน ในเมืองจากชิคาโก้ เอเวนเลส และนิวเดลี เพิ่มขึ้นทุกปี หรือยูโรปละลางประสบกับปัญหาทั้งหมดใหญ่ที่รุนแรงที่สุดในศตวรรษที่ 3 ครึ่งในรอบ 10 ปีที่ผ่านมา เป็นต้น

อุทกภัย ผาด และภัยแคลง นอกจากจะสร้างความเสี่ยงให้กับทรัพย์สินและชีวิตแล้ว ยังทำให้เกิดปัญหาการโยกย้ายฐานะของมนุษย์ ปัญหาสุขภาพใน และการระบาดของโรคติดต่อโดยเฉพาะโรคมาลาเรีย คาดการณ์ว่าเมื่ออุณหภูมิของโลกเพิ่มสูงขึ้นอีก 1-3 องศาเซลเซียส ประชากรของโลกประมาณร้อยละ 45 จะอยู่อาศัยในพื้นที่ที่มีความเหมาะสมต่อการแพร่กระจายของโรคมาลาเรีย

7.8 ผลกระทบต่อสาธารณูปโภค

การเปลี่ยนแปลงสภาพภูมิอากาศที่รุนแรง โดยเฉพาะอากาศจืดใน ภัยภัย แผ่นดินไหวเนือจากแผ่นดินไหว ที่มีผล และสภาพแวดล้อมที่มีการเปลี่ยนแปลงที่น่าจะส่งผลกระทบไปยัง ทำลายระบบสาธารณูปโภคพื้นฐาน เช่น ถนน ทำเรือ ระบบการติดต่อสื่อสาร และคอมมานด์ระบบการจัดส่งพลังงาน และอื่นๆอีก ประเทศที่มีความเสี่ยงสูงได้แก่ ประเทศที่เป็นภูมิภาค ขนาดเล็ก ประเทศที่กำลังพัฒนา และประเทศที่มีความหนาแน่นของประชากรตามแนวชายฝั่งสูงที่ที่เข้าระบบการป้องกันที่ดี

7.9 ผลกระทบต่อสภาพเศรษฐกิจและสังคม

การที่อุณหภูมิของโลกเพิ่มสูงขึ้น จะมีผลโดยตรงต่อสุขภาพจิตใจและความมั่งคั่งและอาจมีผลต่อชีวิตระดับน้ำให้เกิดคลังกรรมการบริหารสิ่งนี้ และการที่อุณหภูมิของโลกเพิ่มสูงขึ้นนั้นจะมีผลต่อการเกิดภัยพิบัติที่ให้อัตราธุร์สูงขึ้นกว่า เป็นต้นจากอุณหภูมิของอากาศที่สูงขึ้นมีผลกระทบต่อสภาพจิตใจของผู้คน ทำให้เกิดความเหงา ความมั่นคงอย่าง ทำให้ขาดการ
ตั้งสินใจและการควบคุมตัวเอง นอกจากนี้ยังอาจเกิดผลต่อสุขภาพอนามัย โดยทำให้เชื้อโรคบางชนิดที่เจริญเติบโตได้ติดในที่อุทุมภูมิสูงสามารถแพร่กระจายได้ดังนี้

ผลการที่อาจจะเกิดขึ้นเนื่องจากสาเหตุต่าง ๆ เช่น การมีอุณหภูมิสูง เช่น การเพิ่มขึ้นของระดับน้ำทะเล และการเปลี่ยนแปลงสภาพแวดล้อมและสภาพภูมิอากาศ ได้แก่ การอยู่อาศัยใกล้ที่อยู่อาศัยเดิม เนื่องจากไม่สามารถประกอบอาชีพเดิมได้ ซึ่งจะส่งผลต่อการเปลี่ยนแปลงและสุขภาพของผู้ป่วยให้เสี่ยงมากขึ้น

ผลการทางด้านเศรษฐกิจเกิดจากภัยต่าง เสียหายจากการริบกว้างทางเศรษฐกิจ เกิดจากการต้องเสียค่าใช้จ่ายในการรักษาการรักษาการเปลี่ยนแปลงของโลก และการเพิ่มขึ้นของคาร์บอนไดออกไซด์ในประเทศต่าง ๆ การสูญเสียผลลัพธ์ทางการเกษตรจากการเพิ่มขึ้นของระดับน้ำทะเล ตลอดจนการป้องกันผลกระทบจากการเพิ่มขึ้นของระดับน้ำทะเลที่จะไปทำให้ต้นทุนในการส่งส่งต่าง ๆ ของโลก ผลกระทบจากการสูญเสียจากน้ำท่วมและพายุที่ทำให้เกิดความเสี่ยงในพื้นที่ต่าง ๆ

การเปลี่ยนแปลงภูมิอากาศมีปัจจัยทางธรรมชาติและผลกระทบที่เกิดจากมนุษย์ เป็นผลให้เกิดการเปลี่ยนแปลงภูมิอากาศในอนาคตจากการสร้างแบบจำลองพยากรณ์จากการเปลี่ยนแปลงภูมิอากาศในอนาคต