ก้าตอพบแบบพิกัด

แบบพิกัด 1.1

1. เขียนได้โดยชั้นเจ ณ ที่นิสูงยุบบนพื้นฐานของทฤษฎีบทเก่าทุกขลับ
2. เริ่มต้นการศึกษาค่าสูงต่ำของ F
3. ศึกษา f'(x) ที่สูงต่ำของ P(x) และระหว่างค่าสูงต่ำของ P(x)
4. ใช้ทฤษฎีบทเก่าทุกขลับ f(x + 1) = f(x)
5. วิเคราะห์สูงต่ำ f'(x) มีค่าและหาค่า

วิธีที่ 2 ประมาณค่า |f(b) − f(a)| = \left| \sum_{i=1}^{N} (f(x_{i} + 1) − f(x_{i})) \right| เมื่อ x_{o} = a, x_{n} = b

6. จะต้องพิจารณาว่า (b − a)f(x) ≥ (b − x)f(a) ใช้ทฤษฎีบทเก่าทุกขลับ f(x) = f(a)

และ f(x) − f(b) และใช้ผลลัพธ์กับ (b − a)f(x) ในที่สุดใช้ทฤษฎีบทเก่าทุกขลับ f’

และใช้สมบัติเก็บกับ f’

7. (a) ความไม่คำนวณของ f’ ที่ x = 0 เป็น removable

8. (a) ซึ่งเพื่อให้โดยค้นหาซึ่งกุญแจเกี่ยวกับการพิจารณา แสดงให้โดยทฤษฎีบทเก่าทุกขลับ

ว่าถ้า f(x_{o}) < 0 แล้ว f คงเป็นลบในบางแห่งทางขวาของ x_{o}

(b) ไม่ใช่

9. (a) ไม่เคย

(b) ไม่จำเป็น

(c) ไม่จำเป็น

10. แสดงว่า \int_{0}^{2} (1 − P(t)) \, dt = 0
แบบฝึกหัด 1.2

1. (a) \(f_1(x, y) = 2x \log (x^2 + y^2) + \frac{2x^3}{x^2 + y^2} \)
 \(f_2(x, y) = \frac{2x^3 y}{x^2 + y^2}, \quad f_{12}(x, y) = \frac{4xy^3}{(x^2 + y^2)^2} \)

2. \(f_2(x, y) = 3x^2 y^2 - 2, \quad f_2(2, 3) = 106, \quad f_5(y, x) = 3x^2 y^2 - 2 \)

3. (c) \([-1, -1, -4] \)

4. (b) ส่วนท้ายไม่มี}*เรียกคณิตศาสตร์ (c) ไม่มี)

5. ใช้คุณสมบัติที่ 2 แล้วได้ว่า \(|f(p) - f(p_o)| \leq M |p - p_o| \)
6. สรุปว่า $f - 0$ บนจุดขอบเขตของเซนเปติที่มีขอบเขต
7. ใช้ 6 8. 0 $13. \frac{25}{7}$
8. ในกรณีที่ F จะที่องค์ที่ จงแสดงว่าทำได้

แบบฝึกหัด 1.3

1. (b) $\frac{dw}{dt} = \frac{dw}{dx} \frac{dx}{dt} + \frac{dw}{dy} \frac{dy}{dt} + \frac{dw}{dz} \frac{dz}{dt}$

 $\left(c \right) \frac{\partial w}{\partial t} = F_1 + F_2 + F_3 r$ $\frac{\partial w}{\partial f} = F_2 b$ $\frac{\partial w}{\partial g} = F_3 c$

2. $\frac{d^2 w}{dx^2} = 2 \frac{\partial^2 w}{\partial x \partial y} \frac{dy}{dx} + \frac{\partial^2 w}{\partial y^2} \left(\frac{dy}{dx} \right)^2 + \frac{\partial w}{\partial y} \frac{d^2 y}{dx^2}$

3. $\hat{n} = \left(-1, 2, 1 \right)$ $\frac{\partial y}{\partial x} = \frac{2}{3}$ $\frac{\partial y}{\partial z} = \frac{4}{3}$

4. $a = \frac{-2x^3 + 2xy^2 + x^2y - 3y^2}{x^4 + 4y^3}$ และเขียนค่าแกน

 $\frac{\partial u}{\partial x} = 2y^2 - 12x^2y^4 - 9x^4y^2 + x^6y^2$

 $(x^4 + 4y^3)^2$

5. $\frac{\partial z}{\partial x} = - \frac{F_1}{F_4}, \frac{\partial z}{\partial y} = - \frac{F_2}{F_4}$

6. $\frac{\partial^2 z}{\partial x^2} = F_1 F_2 F_3 F_4 + F_2 F_3 F_4 F_4 + \frac{2}{F_4} F_4 F_4$

 $\frac{\partial^2 z}{\partial y} = F_1 F_2 F_3 F_4 + F_2 F_3 F_4 F_4 - F_1 F_2 F_3 F_4 - F_1 F_2 F_3 F_4$

7. $\frac{dx}{dt} = \frac{\partial (F,G)}{\partial (x,y)} \frac{dy}{dt} = \frac{\partial (F,G)}{\partial (x,y)} \frac{\partial (F,G)}{\partial (x,y)}$

8. หาค่า \int_0^1 และให้ $t = 1$

9. ใช้ทฤษฎีบทของแคล derp wedge ที่ $p + \Delta p$ ในรูป $f(p) + R(\Delta p)$ ล่าเห็บจุดใดๆ p ใน S แล้วใช้ความจริงที่ว่า $f_{x_1}, f_{x_2}, f_{x_3}$ ที่นั่น $\Delta (\text{และปรารถนาเมื่อขอบเขต})$ บน S ประมาณค่า $R(\Delta p)$
10. ให้ p และ q อยู่ใน S, ค่า $p = (\phi(a), \phi(b))$, $q = (\phi(b), \phi(b))$ แบ่งช่วง $[a, b]$
ตัวอยู่ i_j โดย $i_0 = a$, $i_n = b$ ให้ $P_j = (\phi(i_j), \phi(i_j))$ และ
$$\left| r(p) - r(q) \right| \leq \sum \left| r(P_{j+1}) - r(P_j) \right| \leq M \Sigma \left| P_{j+1} - P_j \right|^2$$ จึงแสดงว่าจะพบ
สามารถทำให้หนึ่งอย่างได้โดยการเลือก i_j

11. $\phi(1) = 1$, $\phi'(1) = a(1 + b + b^2) + b^3$

แบบฝึกหัด 1.4

1. ค่าพิเศษไม่เกิน $\frac{1}{6!} = \frac{1}{720} < .0014$

2. โดยทฤษฎีบทของเทอเรียท $\phi(1)$ ค่าของสัมประสิทธิ์ $< \frac{1}{5}$. ค่าสัมประสิทธิ์ยังไม่เกิน 0.07

3. $6, 11$

4. ใช้ทฤษฎีบทของเทอเรียท $x = 0$ และประมาณ $f(1)$ และ $f(-1)$ และได้
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2$$

5. ใช้ทฤษฎีบทของเทอเรียท $t = x$ ประมาณค่า $f'(x)$ และประมาณค่า $\lim_{x \to \infty} \frac{f'(x)}{x}$

ข้อสังเกตทั่วทั้งตัว $f(x) \to 0$ ซึ่ง $f'(x) / x$ เมื่อ $x \to \infty$

6. เราจะ $\frac{1}{x} < \frac{1}{2} \left(\frac{1}{x^{1+\varepsilon}} + \frac{1}{x^{1-\varepsilon}} \right)$ สลับ δ ใดๆ $0 < \delta < 1$

7. ใช้ $e^x \geq 1 + x$ และเป็นสิ่งที่เราไปให้ที่สุด

8. $\left| R_n(x) \right| \leq \frac{B^n (x-a)^n}{n!} \to 0$

9. ได้ $f(x) = f(a) - f'(a)(x - a) + \frac{f''(c)}{2} (x-a)^2$ ให้ $x = 0$, $x = 1$ และสมบัติ $\frac{\left| f'(a) \right|}{x} \leq \frac{A}{2} \left[a^2 + (1-a)^2 \right]$
แบบสมการที่ 2.1

2. เหมือนข้อ 1. จากที่ 1 มีข้อถูกตามสมบัติทั้งหมดภาษาอยู่ที่ 1.

3. มีที่ได้ 1 อยู่ที่ 1.

4. ใช้ 1.

5. เขียนบทที่ 1. และถูกที่ที่มีการประกอบคำทั้งสองอยู่ในรูปประชาณินคับ

แบบสมการที่ 2.2

1. (a) 2 = \begin{cases} x^2 - x + 1 & \text{ถ้า } x \geq 1 \\ x & \text{ถ้า } x < 1 \end{cases} (b) 2 = (e - 1) e^x

2. ไม่ใช่ 3. โดยการแทนคำว่า 1

4. ให้ 2 = 2 และคำนวณค่าทั้งสองที่ 1.
6. มีค่าตอบมาตามแบบค่าตอบหนังสือ

\[f(x) = \begin{cases}
0 & \text{เมื่อ } 0 \leq x \leq 1 \\
- \frac{1}{2} & \text{เมื่อ } 1 < x
\end{cases} \]

6. \[\int_0^1 dy \int_1^2 f(x, y)dx + \int_1^2 dy \int_1^2 f(x, y)dx \]

7. ช่วงรวมแพร่กระจายที่ \[\sqrt{\frac{y}{2}} f(y) \]

8. \[\frac{1}{20} \]

9. \[\int_0^2 dx \int_x^2 dz \int_1^2 - \frac{1}{4} f(x, y, z)dy \]

\[\int_1^2 dy \int_0^2 dx \int_2 f(x, y, z)dz \]

\[\int_0^2 dz \int_0^2 dx \int_2 - \frac{1}{4} f(x, y, z)dy \]

\[\int_1^2 dy \int_0^2 dz \int_1^2 - \frac{1}{4} f(x, y, z)dx + \int_1^2 dy \int_1^2 dz \int_1^2 - \frac{1}{4} f(x, y, z)dx \]

\[\int_0^2 dz \int_0^2 dx \int_0^2 - \frac{1}{4} f(x, y, z)dz + \int_0^2 dz \int_0^2 dy \int_1^2 - \frac{1}{4} f(x, y, z)dx \]

10. \[\frac{44}{15} \]

11. (a) \[\frac{e - 1}{2} \]; (b) \[\frac{1}{2} e^4 - e^8 \]

12. ผลลัพธ์การอินทิเกรศคือ \[\int_0^1 dy \int_0^{y^3} xy dx + \int_0^2 dy \int_0^{y^3} xy dx \]

13. ใช้ความคิดเห็นของสมมติฐานปรกติของ \(f \)

14. แบ่งกรัชเสียดลิ้มนิ้วในกรัชเสียดประมาณ .17558 ซึ่งคืนใน .015 ให้เลือกไปยิ่งก็ได้ . 17447 ที่ราบทางภาคที่.

13 \log 13 + 10 \log 10 - 12 \log 12 - 11 \log 11

เขียนใหม่ให้ 2 log \[\frac{13}{12} + \log \frac{13}{11} - 10 \log \left[1 + \frac{2}{130} \right] \] และใช้ยุทธการกำกับจะได้ . 174465 คือในหลักสกัดท้าย.
15. พิจารณา $\int_a^b (f + \lambda g)^2$ ซึ่งไม่เป็นลบ

16. (a) น้อยกว่า $\sqrt{\pi}$; (b) น้อยกว่า $\sqrt{2\pi}$

17. พิสูจน์สำหรับ $P(x) = 1, x, x^2$ และ x^3 ในทางกลับ

18. (a) $\frac{3e^{x^2} - 2e^{x^2}}{x}$; (b) $3\cos(12x) - 2\cos(8x)$

19. คำนวณ $\int_0^1 dx \int_0^1 |y - x| dy$

แบบฝึกหัด 2.4

1. พื้นที่ $= \int_0^\infty e^{-x} dx = 1$

2. (a) สูตรที่ (b) สูตรที่ (c) สูตรที่ (d) สูตรที่ (e) สูตรที่ (f) สูตรที่ (g) สูตรที่ (h) สูตรที่

3. (a) สูตรที่ (b) สูตรที่ (c) สูตรที่ (d) ไม่ใช่สูตรที่รวมไปในแบบ (e) สูตรที่ (f) สูตรที่ (g) สูตรที่ (h) สูตรที่

4. ไม่ $\infty < 1$ และ $\beta > 1$ ก็ $\infty > 1$ และ $\beta < 1$

5. ทุกช่วง (∞, β) ซึ่ง $\infty > -1, \beta > -1$ และ $\infty + \beta < -1$

6. ใช้ค่าอินTEGRALрабของ $\int_0^\infty x^4 e^{-x} dy$ และทดสอบผลลัพธ์ว่าอินTEGRALเมื่อ $r \to 0^+, R \to \infty$

7. สูตรที่ 8. สูตรที่ 9. ใช้ทฤษฎีบทคำขันฮ่อง

10. (b) กำหนด $\int dx \int dy$ ยก
แบบฝึกหัด 3.1

1. (a) สูงที่สุด (b) สูงที่สุด (c) ต่ำที่สุด

2. (a) \[a_n = \frac{1}{(n + 1) (\sqrt{n + 1} + \sqrt{n})} \approx \frac{1}{2n} \text{ ต่ำที่สุด} \]
 (b) \[a_n = \frac{1}{n} \text{ ต่ำที่สุด} \]

3. (b) ใช้ \[b_n = \frac{1}{n-1} \] สำหรับ \(n \geq 2 \)
 (c) ใช้ \[b_n = \frac{1}{n-A-1} \] สำหรับ \(n \geq A + 2 \)

4. แปดเหลี่ยมแบบเข่าวงสองข้อมีความยาว 1, 2, 4, 8, ...

5. ใช้ \(\log \)

6. (b) ใช้จริง (c) จริง (d) จริงใช้ Schwarz inequality (f) ซับขากจาก \(n + 1 \) ถึง \(2n \)

7. ใช้ \[a_k = \frac{2k}{\sqrt{k}} \] แล้วใช้ Schwarz inequality

แบบฝึกหัด 3.2

1. ให้การทดสอบแบบโควิดเชค

2. (a) \(-1 \leq r < 1\) (b) \(x = 0\) (c) \(-3 \leq x \leq -1\)
 (d) \(|x| \leq \frac{1}{4}\) (e) \(|x - 1| \leq \sqrt{3}\) (f) \(s > 0\)
 (g) \(-e^{-1} \leq \beta < e^{-1}\) (h) \(\gamma > \alpha + \beta\) (i) \(-1 < x \leq 1\)
 (j) \(-\infty < x < \infty\) (k) \(x > -1 \) หรือ \(x \leq -2\)
 (m) \(\theta \leq x\)

3. (a) 0 (b) \(e\) (c) \(\infty\) สำหรับ \(c < 1, 1\) สำหรับ \(c = 1, 0\) สำหรับ \(c > 1\)

4. \(\Sigma \left(p_n + \cdots - p_n\right)\)
แบบฝึกหัด 3.3
1. \(\frac{2^n + 1 + (-1)^n}{3} \quad 2. -2 < x < 1 \)

แบบฝึกหัด 3.4
1. ประมาณ \(10^{8569} \) พัน
2. (b) \(\frac{\log n}{2} + o(1) \) เมื่อ \(o(1) \) หมายถึงจำนวนขั้นแรก
3. รัศมีของการหมุนรอบ ผ.
4. (a) \(S = -0.0826 \) คิดเฉพาะค่าตัวราว \(0.0005 \)
 (b) \(S = 0.904412 \) คิดเฉพาะค่าตัวราว \(0.005 \)
5. \(\sum_{k=1}^{N} k^3 = P(N) \) เมื่อ \(P \) เป็นพื้นที่จำกัด 4
6. เขียนพจน์ที่ ๆ ไปบน \(\frac{1}{n-a} - \frac{1}{n-b} \)
7. ใช้สูตรของสคอร์สติง
10. ทดสอบผลวงในบางส่วน

แบบฝึกหัด 4.1
1. ใช่, ไม่ใช่, ใช่
2. \(\lim_{x \to 0} \frac{F(x)}{x} = \sum_{n=1}^{\infty} \frac{1}{n^2} \)
3. ทดสอบ \(\int_{0}^{L} f_n \) และ \(\int_{L}^{\infty} f_n \)
4. แบ่งช่วงในการอนิพการบน \([-1, -c], [-c, c] \) และ \([c, 1] \) และแสดงว่าถ้าสখน
 และอนุสหมายมีค่าน้อยมากเมื่อ \(n \) น้อยมากในขณะที่อนิพการบนที่เหลือจึงก็ให้ \(g(0) \)
5. ถ้า \(g \) อยู่ในพุ่มน์ \(C_n \) แล้วจะปรากฏข้อตกลง คำนวณขั้นเริ่ม (intersection of finitely many) เป็นขั้นตอนลำ
แบบฝึกหัด 4.2

1. (b) \(\frac{1}{x} = \frac{1}{1 + (x-1)} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + \ldots \)

 (c) \(\log (1 + x^3) = x^2 - \frac{(x^3)^2}{2} + \frac{(x^3)^3}{3} - \ldots \)

2. (a) \(x \frac{d}{dx} \left\{ x \frac{d}{dx} \frac{1}{1-x} \right\} = \frac{x + x^2}{(1-x)^2} \); \(\left(\frac{1}{2} \right) \log \left(\frac{1+x}{1-x} \right) \)

3. (a) ไม่ใช่ (b) ใช่ 4. ใช้บทบาทของทฤษฎีบท 4.1 1

5. ถ้า \(w = -\frac{1}{3} \) และ \(w^2 + w + 1 = 0 \)

6. \(F(x) = 1 - 2x + 3x^2 - \ldots - 96x^7 + \ldots \)

7. \(\frac{1}{F(x)} \) เป็นพหุนาม

8. ถ้า \(\phi = \angle QPC \) แล้ว \(\tan \phi = \frac{2 \sin^2 \frac{\theta}{2}}{1 + 2 \cos \frac{\theta}{2}} = \frac{\theta}{3} + \frac{\theta^3}{72} + \ldots \), จาก

 แตะจะอ่านยาวว่า \(\phi = \frac{\theta}{3} + \frac{\theta^3}{648} + \ldots \)

แบบฝึกหัด 4.3

1. 0 2. \(\infty \) 3. \(\pi \left| x \right| \) 4. \(\pi \left| x \right| \) (พยายามกราฟที่กว้าง ๆ)

5. หาจุดที่แล้วบวกหรือจุดที่ลบ

6. หาการสูงหรือ \(g(x) \) สัมพัทธ์กับ \(x \geq 1 \)

7. **สมมติเคสจริง (แม้ว่า \(\left| G(x,y) \right| \leq \frac{1}{x^2} \) สำหรับ \(1 \leq y \)

 ก็ตามเป็นไปตามที่รูเล็กซึ่งสมมติของปลาย)
แบบฝึกหัด 4.4

1. ให้ $t = \frac{s}{y}$ 2. (b) ให้ $A(x) = \theta$

3. (a) $\frac{\Gamma(\frac{4}{3}) \Gamma(\frac{1}{2})}{3 \Gamma(\frac{11}{6})}$ (b) $\sqrt{2} \Gamma(\frac{1}{2}) = \sqrt{2\pi}$ (c) $-\Gamma(\frac{4}{3}) \Gamma(\frac{2}{3})$

 (b) $\frac{1}{2} \Gamma(\frac{1}{4}) \Gamma(\frac{3}{4})$

4. $\frac{1}{q} \Gamma(\frac{p+1}{q})$ 5. $\Gamma(s + 1) \frac{1}{(r + 1)^{s + 1}}$

6. (a) $Lc^2 + L^2 \text{erf} \left(\frac{1}{L}\right) - \sqrt{\pi}$ (b) $\sqrt{\pi} \text{erf} (1) = \frac{1}{2}e$

 (c) $F(x)$ ณ นวุณรับ $\frac{A}{\sqrt{x}}$