โดย

\[f_1(\omega) = \begin{cases}
1, & |\omega| < 2 \\
\frac{1}{2}, & \omega = \pm 2 \\
0, & |\omega| > 2
\end{cases} \]

\text{ทฤษฎี 2.3.8}

ถ้า \(\hat{f}[f] = F(\omega) \) แล้ว

\[\hat{F}[f(t)\cos ct] = \frac{1}{2} F(\omega-c) + \frac{1}{2} F(\omega+c) \]

\text{เนื่องจาก}

\[\cos ct = \frac{1}{2} (f_1 + f_{-1}) \]

ดังนั้น

\[\hat{F}[f(t)\cos ct] = \hat{F}\left[\frac{1}{2} f(t) f_1 + \frac{1}{2} f(t) f_{-1} \right] \]

จากคุณสมบัติเชิงเส้น ตามทฤษฎี 2.3.2 จะได้

\[\hat{F}[f(t)\cos ct] = \frac{1}{2} \hat{F}[f(t)f_1] + \frac{1}{2} \hat{F}[f(t)f_{-1}] \]

และจากคุณสมบัติ ตามทฤษฎี 2.3.3 ทำให้ได้ว่า
\[\hat{f}[f(t) \cos ct] = \frac{1}{2} F(\omega-c) + \frac{1}{2} F(\omega+c) \]

บทที่ 2.3.1

ถ้า \(\hat{f}[f] = F(\omega) \) แล้ว

\[\hat{f}[f(t) \sin ct] = \frac{1}{2i} [F(\omega-c) - F(\omega+c)] \]

ตัวอย่าง 2.3.7

จงหาผลลัพธ์ของฟังก์ชัน \(f(t) \cos ct \)

กำหนด

\[
f(t) = \begin{cases}
1 , & |t| < \frac{1}{2} \\
0 , & |t| > \frac{1}{2}
\end{cases}
\]

ผลลัพธ์

เนื่องจาก

\[\hat{F}[f(t)] = \frac{2}{\omega} \sin \left(\frac{\omega}{2} \right) \]

โดยทฤษฎี 2.3.8 จะได้

\[\hat{F}[f(t) \cos ct] = \frac{\sin \frac{1}{2}(\omega-c)}{\omega-c} + \frac{\sin \frac{1}{2}(\omega+c)}{\omega+c} \]

ทฤษฎี 2.3.1
ตัวอย่าง 2.3.8

จงหาผลการแปลงฟูรีเยร์ของ \(f(t) = \frac{\sin t \cdot \sin 5t}{\pi t} \)

ผลได้

จากตัวอย่าง 2.2.4

\[
\hat{f} \left(\frac{\sin t}{\pi t} \right) = F(\omega) = \begin{cases}
1 & , \omega < 1 \\
\frac{1}{2} & , \omega = \pm 1 \\
0 & , \omega > 1
\end{cases}
\]

โดยบททฤษฎี 2.3.1 จะได้
\[\hat{f} \left(\frac{\sin t \sin 5t}{t} \right) = \frac{1}{2i} \begin{cases} 1 & \omega-5i < 1 \\ \frac{1}{2} & \omega-5i = 1 \\ -\frac{1}{2} & \omega-5i > 1 \end{cases} \begin{cases} 1 & \omega+5i < 1 \\ \frac{1}{2} & \omega+5i = 1 \\ 0 & \omega+5i > 1 \end{cases} \]

ทฤษฎี 2.3.9

ถ้า \(\hat{f} = F(\omega) \) โดยที่ \(f \) เป็นฟังก์ชันเรียงเรียงช่วง ๆ และ

\[\int_{-\infty}^{\infty} |f'(t)| \, dt \] หาค่าได้แล้ว

\[\hat{f} \left[f' \right] = i\omega \hat{f} \left[f \right] = i\omega F(\omega) \]

ข้อสรุป

ก่อนหน้านี้สังเกตถูกว่า \(f(t) \to 0 \) เมื่อ \(t \to \pm \infty \) เพราะว่า

\[f(t) = f(0) + \int_{0}^{t} f'(u) \, du \]

เนื่องจาก \(\int_{0}^{\infty} f'(u) \, du \) หาค่าได้ ดังนั้น \(f(t) \) ต้องหาค่าได้ เมื่อ

\(t \to \infty \) ถ้าให้ \(f(t) \to c \neq 0 \) เมื่อ \(t \to \infty \) แล้ว \(\int_{0}^{\infty} f(t) \, dt \) หาค่าไม่ได้ (ซึ่งขัดแย้งกับ \(\int_{0}^{\infty} f'(t) \, dt \) หาค่าได้) ฉะนั้น \(f(t) \to 0 \) เมื่อ

\(t \to \infty \) ทำให้ดียกทั้ง \(f(t) \to 0 \) เมื่อ \(t \to -\infty \) ที่พบรากลับย่อมถูก

160 MA 343
จาก

\[\hat{f}(f') = \int_{-\infty}^{\infty} f'(t) e^{-i\omega t} \, dt \]

โดยมีเกณฑ์ดังนี้

\[u = e^{-i\omega t}, \quad dv = f'(t) \, dt \]

\[du = -i\omega e^{-i\omega t} \, dt, \quad v = f(t) \]

จะพบว่า

\[\hat{f}(f') = f(t)e^{-i\omega t} \int_{-\infty}^{\infty} + i\omega \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, dt \]

นั่นคือ

\[\hat{f}(f') = i\omega \hat{f}(f) \] (2.3.1)

โดยการใช้ผลลัพธ์ในสมการ (2.3.1) ซ้ำ ๆ กัน จะพบว่า

\[\hat{f}(f^{(k)}(t)) = (i\omega)^k \hat{f}(f); \quad k = 1, 2, \ldots (2.3.2) \]

ทั้งนี้ สมการ (2.3.2) ไม่ได้มีการวิบัติปัญหาว่า ผลการแปลงฟูร์รีย์ของ

\[f^{(k)}(t) \]

จะต้องหาค่าได้ แต่เป็นการยอมรับว่า หาค่าได้ จะเท่ากับ

\[(i\omega)^k \hat{f}(f) \]
1. กรณี \(f(t) \) ไม่ต่อเนื่องที่ \(t = t_k \) \((k = 1, 2, \ldots, n)\) จะพบว่า

\[
\hat{F} [f'] = i\omega \hat{F} [f] - \sum_{k=1}^{n} \epsilon_k \hat{F} [\delta(t-t_k)]
\]

โดย

\[
\epsilon_k = f(t_k^+) - f(t_k^-)
\]

ซึ่งแสดงได้ดังนี้

จากทั่วไป 1.5.6

\[
f'(t) = g'(t) - \sum_{k=1}^{n} \epsilon_k \delta(t-t_k)
\]

ดังนั้น

\[
\hat{F} [f'] = \hat{F} [g'(t)] - \sum_{k=1}^{n} \epsilon_k \hat{F} [\delta(t-t_k)]
\]

เนื่องจาก \(\hat{F} [\delta(t-t_k)] = e^{-i\omega t_k} \) (ซึ่งจะได้กล่าวถึงในทั่วไป 2.6.1)

เพิ่มเติมดังนี้

\[
\hat{F} [f'] = i\omega \hat{F} [f] - \sum_{k=1}^{n} \epsilon_k e^{-i\omega t_k}
\]

2. สำหรับผลการแปลงฟูรьеของข่ายนิยระและข่ายของอนุพันธ์ของฟังก์ชัน

สามารถหาได้โดยวิธีเดียวกัน ดังนี้
\[
\hat{F}_c[f'(t)] = \int_0^\infty f'(t)\cos wt \, dt
\]

\[
= -f(0) + \omega \int_0^\infty f(t)\cos wt \, dt
\]

\[
= \omega \hat{F}_s(\omega) - f(0)
\]

ทั่วยังเดียวกัน

\[
\hat{F}_s[f'(t)] = \omega \hat{F}_s(\omega)
\]

บทนิยาม 2.3.10

ถ้า \(\hat{F}[f] = F(\omega) \) แล้ว

\[
\hat{F}[-itf(t)] = \frac{dF(\omega)}{d\omega}
\]

ข้อทั่วไป

เนื่องจาก

\[
F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, dt
\]

ดังนั้น

\[
\frac{dF(\omega)}{d\omega} = \frac{d}{d\omega} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, dt
\]
เนื่องจาก \(f(t)e^{-iut} \) เป็นฟังก์ชันต่อเนื่องเป็นจำกัด ๆ จึงสังเขปณิย์การหาอนุพันธ์ และการอินทีกรัต ได้

\[
\frac{dF(\omega)}{d\omega} = \int_{-\infty}^{\infty} [-itf(t)]e^{-iut} \, dt
\]

\[= \hat{F} [-itf(t)]\]

โดยการที่ซ้ำ ๆ ก็จะได้สรุปว่า (ถ้า \(F(\omega) \) มีอนุพันธ์ได้ถึงอนันต์ \(n \))

\[\hat{F} [(-i)^k t^k f(t)] = \frac{d^k F(\omega)}{d\omega^k}, \quad k \leq n\]

หรือ

\[\hat{F} [t^k f(t)] = \frac{1}{(-i)^k} \frac{d^k F(\omega)}{d\omega^k}, \quad k \leq n\]

ด้วยลง 2.3.9

จงหาผลการแปลงฟูรีย์ของ \(f(t) = t^{-2}/2 \)

ผลได้

เนื่องจาก

\[F(\omega) = \int_{-\infty}^{\infty} t^{-2}/2 e^{-iut} \, dt\]

ดังนั้น

\[F'(\omega) = -i \int_{-\infty}^{\infty} t^{-2}/2 e^{-iut} \, dt\]

164
โดยการถิดการถิ่น

\[u = e^{-i\omega t} \quad , \quad dv = t e^{-t^2/2} \, dt \]

\[du = -i\omega \, e^{-i\omega t} \, dt \quad , \quad v = -e^{-t^2/2} \]

จะได้

\[
\begin{align*}
F'(\omega) &= -i \left[e^{-i\omega t} \int_{-\infty}^{\infty} -i\omega e^{-t^2/2} \, dt \right] \\
&= -\omega \int_{-\infty}^{\infty} e^{-t^2/2} \, dt - i\omega \int_{-\infty}^{\infty} e^{-t^2/2} \, dt \\
&= -\omega F(\omega)
\end{align*}
\]

\[F'(\omega) + \omega F(\omega) = 0 \]

การเป็นสมการเชิงอนุพัติ สามารถแยกฟ่าได้

\[
\frac{F'(\omega)}{F(\omega)} = -\omega
\]

\[\ln F(\omega) = -\frac{\omega^2}{2} + c_1 \]

\[F(\omega) = c e^{-\omega^2/2} \]
จาก

\[F(ω) = \int_{-\infty}^{\infty} e^{-t^2/2} e^{-iωt} \, dt \]

\[F(0) = \int_{-\infty}^{\infty} e^{-t^2/2} \, dt \]

\[= \sqrt{2\pi} \int_{-\infty}^{\infty} (t/\sqrt{2})^2 \, dt(\sqrt{2}) \]

\[= \sqrt{2\pi} \cdot \sqrt{2} \]

\[= \sqrt{\pi} \]

\[= c \]

เพราะฉะนั้น

\[F(ω) = \sqrt{2\pi} e^{-ω^2/2} \]

ด้วยอย่าง 2.3.10

จากผลการแปลงฟูรьеของ \(f(t) = t \, e^{-t^2/2} \)

ผลเพิ่ม

จากด้วยอย่าง 2.3.9

\[F \left[t \, e^{-t^2/2} \right] = \sqrt{2\pi} \, e^{-ω^2/2} \]

ใช้คสตมภวิตตามทฤษฎีบท 2.3.10
\[\hat{F} \left[t \frac{t^2}{2} \right] = -\frac{1}{i} \frac{d}{d\omega} \omega^{-2/2} \]

\[= i \omega^{-2/2} (-\omega) \]

\[= -i \omega^{-2/2} \]

\[\text{ตัวอย่าง 2.3.11} \]

จงหาผลการแปลงฟูรีเยของ \(f(t) = t e^{-5t} u(t) \)

ผลเฉลย

เนื่องจาก

\[\hat{F} \left[e^{-5t} u(t) \right] = \frac{1}{5+i\omega} \]

จากคุณสมบัติทางคณิตเราได้ว่า

\[\hat{F} \left[t e^{-5t} u(t) \right] = -\frac{1}{i} \frac{d}{d\omega} \left(\frac{1}{5+i\omega} \right) \]

\[= -\frac{1}{i} \frac{(-i)}{(5+i\omega)^2} \]

\[= \frac{1}{(5+i\omega)^2} \]

\[\text{MA 343} \]
ตัวอย่าง 2.3.12

จงหาผลการแปลงฟูรьеของ $f(t) = t^2 u(-t)$

ผลเฉลย

จากตัวอย่าง 2.1.1

$$\hat{f}[t^2 |t|] = \frac{2}{1+\omega^2}$$

จากคุณสมบัติช่วงต้น เราได้ว่า

$$\hat{f}[t^2 |t|] = -\frac{1}{i} \frac{d}{d\omega} \left(\frac{2}{1+\omega^2} \right)$$

$$= -\frac{2}{i} \frac{(-2\omega)}{(1+\omega)^2}$$

$$= -\frac{4\omega i}{(1+\omega)^2}$$

ตัวอย่าง 2.3.13

จงหาผลการแปลงฟูรьеของ $f(t) = t^2 u(t)$

ผลเฉลย

เนื่องจาก
\[
\hat{f}[t^2u(t)] = \int_{-\infty}^{0} t^2 e^{-j\omega t} dt
\]

\[
= \frac{1}{1-j\omega}
\]

จากคุณสมบัติทางฟิด

\[
\hat{f}[t^2u(t)] = \frac{1}{(-i)^2} \frac{d^2}{d\omega^2} \left(\frac{1}{1-j\omega} \right)
\]

แต่

\[
\frac{d}{d\omega} \left(\frac{1}{1-j\omega} \right) = \frac{i}{(1-j\omega)^2}
\]

และ

\[
\frac{d^2}{d\omega^2} \left(\frac{1}{1-j\omega} \right) = \frac{-2}{(1-j\omega)^3}
\]

ดังนั้น

\[
\hat{f}[t^2u(t)] = \frac{-2}{(1-j\omega)^3}
\]

จากคุณสมบัติทาง ๆ ที่ได้กล่าวมาแล้ว ทำให้ผลการสร้างตารางผลการแปลงฟูร์เนียร์ได้ ดังตาราง 2.3.1 นี้
ตาราง 2.3.1
ผลการแปลงฟูร์เรย์

<table>
<thead>
<tr>
<th>n</th>
<th>ลำดับการแปลง</th>
<th>แบบสมการ</th>
<th>ค่าที่เท่ากับ</th>
<th>ค่าที่เท่ากับ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(u(t-c_1) - u(t-c_2),) (c_1 < c_2)</td>
<td>(\mathcal{F}[f] = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt = F(\omega))</td>
<td>(-i\omega c_1 - i\omega c_2)</td>
<td>(\frac{e^{-i\omega c_1} - e^{-i\omega c_2}}{i\omega})</td>
</tr>
<tr>
<td>2</td>
<td>(u(t+c) - u(t-c)) (c > 0)</td>
<td></td>
<td>(\frac{2 \sin c\omega}{\omega})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(e^{at}[u(t-c_1) - u(t-c_2)]) (c_1 < c_2)</td>
<td></td>
<td>(\frac{(a-i\omega)c_2 - (a-i\omega)c_1}{a-i\omega})</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(e^{at}u(t), \text{Re}(a) < 0)</td>
<td></td>
<td>(\frac{1}{i\omega - a})</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(e^{at}u(t-c), \text{Re}(a) < 0)</td>
<td></td>
<td>(\frac{(a-i\omega)c}{i\omega - a})</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(e^{-at}u(-t), \text{Re}(a) < 0)</td>
<td></td>
<td>(\frac{-1}{i\omega + a})</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(e^{a</td>
<td>t</td>
<td>}, \text{Re}(a) < 0)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(e^{at}u(t) - e^{-at}u(-t), \text{Re}(a) < 0)</td>
<td></td>
<td>(\frac{-2i\omega}{\omega^2 + a^2})</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(k!e^{at}u(t), k=1,2,\ldots, \text{Re}(a) < 0)</td>
<td></td>
<td>(\frac{k!}{(i\omega - a)^{k+1}})</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(e^{ibt}[u(t+c) - u(t-c)], c > 0)</td>
<td></td>
<td>(\frac{2 \sin c(\omega - b)}{\omega - b})</td>
<td></td>
</tr>
<tr>
<td>(f(t))</td>
<td>(\mathcal{F}[f] = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = F(\omega))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{a^2 + t^2}), (\text{Re}(a) < 0)</td>
<td>(- \frac{\pi}{a} e^{a</td>
<td>\omega</td>
<td>})</td>
<td></td>
</tr>
<tr>
<td>(\frac{t}{(a^2 + t^2)^2}), (\text{Re}(a) < 0)</td>
<td>(\frac{j\omega}{2a} e^{a</td>
<td>\omega</td>
<td>})</td>
<td></td>
</tr>
<tr>
<td>(\frac{ebt}{a^2 + t^2}), (\text{Re}(a) < 0, b \text{ real})</td>
<td>(- \frac{\pi}{a} e^{a</td>
<td>\omega-b</td>
<td>})</td>
<td></td>
</tr>
<tr>
<td>(\frac{\cos bt}{a^2 + t^2}), (\text{Re}(a) < 0, b \text{ real})</td>
<td>(- \frac{\pi}{2a} [e^{a</td>
<td>\omega-b</td>
<td>} + e^{a</td>
<td>\omega+b</td>
</tr>
<tr>
<td>(\frac{\sin bt}{a^2 + t^2}), (\text{Re}(a) < 0, b \text{ real})</td>
<td>(- \frac{\pi}{2ai} [e^{a</td>
<td>\omega-b</td>
<td>} - e^{a</td>
<td>\omega+b</td>
</tr>
<tr>
<td>(t[u(t) - u(t-c)])</td>
<td>(1 - e^{-j\omega c}(1 + j\omega c) \frac{1}{\omega^2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t^k[u(t) - u(t-c)]), (k = 1, 2, \ldots)</td>
<td>(\frac{k! - e^{-j\omega c}g_k(j\omega c)}{(j\omega)^{k+1}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_k(x) = x^k + kx^{k-1} + \ldots + k!)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t[u(t) - u(t-c)] + (2c-t) \times [u(t-c) - u(t-2c)])</td>
<td>(1 - 2e^{-j\omega c} + e^{-2j\omega c} \frac{1}{\omega^2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e^{-at^2}, a > 0)</td>
<td>(\sqrt{\frac{\pi}{a}} e^{-\omega^2/(4a)})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
แบบฝึกหัด 2.3

1. น้ำ โมเลกุล $\hat{F}(t) = F(\omega)$ แล้ว จะแสดงว่า

$$\hat{F}(t/\alpha) = a F(\omega + b), \quad a > 0$$

2. จงแสดงว่า

2.1 $\hat{F}(f(at)) = \frac{1}{a} \hat{F}(\omega/a), \quad a > 0$

2.2 $\hat{F}(f(at)) = \frac{1}{a} \hat{F}(\omega/a), \quad a > 0$

3. จงแสดงว่า

3.1 $\hat{F}(c f(t) + c t) = \frac{1}{2} [\hat{F}(\omega + b) + \hat{F}(\omega - b)]$

3.2 $\hat{F}(c f(t) + c t) = \frac{1}{2} [\hat{F}(\omega + b) + \hat{F}(\omega - b)]$

3.3 $\hat{F}(c f(t) + c t) = \frac{1}{2} [\hat{F}(\omega + b) + \hat{F}(\omega - b)]$

3.4 $\hat{F}(c f(t) + c t) = \frac{1}{2} [\hat{F}(\omega + b) + \hat{F}(\omega - b)]$

4. จงแสดงว่า

4.1 $\hat{F}(f''(t)) = -\omega^2 \hat{F} + f'(0)$
4.2 \[\hat{F}_s [f''(t)] = -\omega^2 F_s(\omega) + \omega f(0) \]

4.3 \[\hat{F}_c [f^{(4)}(t)] = \omega^4 F_c(\omega) + \omega^2 f'(0) - f^{(3)}(0) \]

4.4 \[\hat{F}_s [f^{(4)}(t)] = \omega^4 F_s(\omega) - \omega^2 f'(0) + \omega f''(0) \]

5. ให้คุณสมบัติต่าง ๆ เพื่อหาผลการแปลงฟูรีเยของฟังก์ชันต่อไปนี้

5.1 \[f(t) = e^{-ct} u(t) \]

5.2 \[f(t) = (1-t)^{-1} \]

5.3 \[f(t) = t e^{-t} u(t) \]

5.4 \[f(t) = e^{bt-t^2} \]

5.5 \[f(t) = t e^t u(-t) \]

5.6 \[f(t) = t^2 e^{-t^2/2} \]

5.7 \[f(t) = e^{-|t-c|} \]
5.8 \quad f(t) = t^{-\frac{t^2}{2}} \cos \pi t

5.9 \quad f(t) = t \int t^{t^1}

5.10 \quad f(t) = \frac{1}{1+(t-3)^2}

5.11 \quad f(t) = (t-2)^2/2

5.12 \quad f(t) = t^{-3t-2}

5.13 \quad f(t) = \begin{cases} t^{-2t} \sin 2t & , t > 0 \\ 0 & , t < 0 \end{cases}

5.14 \quad f(t) = \begin{cases} t^{-2t} & , t > 0 \\ 0 & , t < 0 \end{cases}

6. จงหาผลการแปลงฟูรีย์ในตาราง 2.3.1 ตามค่าแน่นอนทาน

6.1 หมายเลข 2 จาก หมายเลข 1

6.2 หมายเลข 5 จาก หมายเลข 4

6.3 หมายเลข 6 จาก หมายเลข 4

6.4 หมายเลข 7 จาก หมายเลข 4 และ 6
6.5 หมายเลา 8 จาก หมายเลา 4 และ 6

6.6 หมายเลา 9 จาก หมายเลา 4 โดยหาอนุกรมของกิจ F และ F เกี่ยวกับค่าม้าผลิตภัณฑ์ a

6.7 หมายเลา 10 จาก หมายเลา 2

6.8 หมายเลา 11 จาก หมายเลา 7

6.9 หมายเลา 12 จาก หมายเลา 11 , โดยการหาอนุกรม

6.10 หมายเลา 13 จาก หมายเลา 11

6.11 หมายเลา 14 และ 15 จาก หมายเลา 13

6.12 หมายเลา 17 โดยคำนวณโดยตรง

6.13 หมายเลา 18 จาก หมายเลา 1

คำตอบ

5

5.1 \[\frac{1}{c+i\omega} \]

5.3 \[\frac{1}{1+i\omega^2} \]
5.5 \[\frac{1}{1-i\omega} \]

5.7 \[\frac{2}{1+\omega^2} e^{-i\omega} \]

5.9 \[\frac{-4i\omega}{(1+\omega^2)^2} \]

5.10 \[\pi \int \frac{3i\omega}{\xi} \frac{1-i\omega}{1+i\omega} d\xi \]

5.11 \[\int_0^\infty \frac{2i\omega}{\xi} e^{-\omega^2/2} d\xi \]

5.12 \[\frac{6\xi}{9+\omega^2} \]

5.13 \[\frac{2(2-i\omega)}{4+\omega^2} \]