บทที่ 5
การประยุกต์ใช้เกี่ยวกับผลการแปลงลาปлас (
(Applications Involving Laplace Transforms))

5.1 บทนำ
ผลการแปลงลาปласสามารถใช้ในการประยุกต์ได้มากมายเหมือน ๆ กับผลการแปลงฟูเรีย แต่ที่ผ่านมา ซึ่งจะกล่าวถึงอีก การหาค่าอินเทɡรัลจากข้อ
เชิง, ผลละเอียดและการเชื่อมโยงนั้น รวมถึงการเชื่อมโยงนั้น

5.2 การหาค่าอินเทɡรัล (Evaluating Integrals)
การประยุกต์กันสนิทกันอย่างหนึ่ง ของผลการแปลงลาปлас คือ การหาค่าอินเทɡรัลโดยใช้ค่าอินเทɡรัลที่ประกอบด้วยตัวแปรเสรี (free parameter)
โดยในบางครั้ง เราพบว่า อินเทɡรัลที่มานำมาเป็นอินเทɡรัลของผลการแปลง
ลาปлас ด้วยการเปลี่ยนตัวแปรของผลการแปลง (คือตัวแปรต่อ) และบางครั้ง เราทำให้อินเทɡรัลได้โดยการหาค่าผลการแปลงลาปласของอินเทgement
ที่เกี่ยวข้องกับตัวแปรเสรี (ไม่ใช่ตัวแปรในการอินเทɡรัล) ซึ่งเมื่อเทียบกับค่าที่ได้จะได้ปัญหาเรื่อง

ตัวอย่าง 5.2.1

จากค่าอินเทgement

\[I = \int_0^\infty \frac{\sin t}{t} \, dt \]

\[J = \int_0^\infty \frac{-t \sin t}{t} \, dt \]

ผลลัพธ์

จะสังเกตเห็นว่าอินเทgementของเป็นผลการแปลงลาปласของ

MA 343 371
พิสูจน์ $\frac{\sin t}{t}$ และจากตัวอย่าง 4.3.13 จะได้

$$\hat{I}\left[\frac{\sin t}{t}\right] = \int_0^\infty e^{-st} \frac{\sin t}{t} \, dt = \tan^{-1} \frac{1}{s}$$

ดังนั้น โดยการให้ $s=0$ และ $s=1$ จะพบว่า

$$I = \hat{I}\left[\frac{\sin t}{t}\right]_{s=0} = \tan^{-1} \infty = \frac{\pi}{2}$$

$$J = \hat{I}\left[\frac{\sin t}{t}\right]_{s=1} = \tan^{-1} 1 = \frac{\pi}{4}$$

ด้วยการ 5.2.2

จงหาค่าอินฟินิตี

$$\int_0^\infty \frac{\cos tx}{x^2 + 1} \, dx$$

ด้วย

เราจะหาผลการแปลงลาปลาสที่ค่าการแปลงแห่ง t ดังนั้นให้

$$f(t) = \int_0^\infty \frac{\cos tx}{x^2 + 1} \, dx$$

จะได้

$$\hat{f}(t) = F(s) = \int_0^\infty \frac{s}{(2s - 1)(s^2 + 1)} \, dx$$

$$= \frac{s}{s^2 - 1} \int_0^\infty \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + s^2} \right) \, dx$$

$$= \frac{s}{s^2 - 1} \left(\frac{\pi}{2s} - \frac{\pi}{2s} \right)$$

$$= \frac{\pi}{2s+1}$$
โดยผลการแปลงลาปลาสตัน จะได้

\[\mathcal{L}^{-1} [1(s)] = f(t) = \frac{1}{2} \mathcal{L}^{-1} [t^2], \quad t > 0 \]

แบบฝึกหัด 5.2

ใช้ผลการแปลงลาปลาสตันที่ราบหลัก หรือคูณเมทริกผลการแปลงลาปลาสตันหาค่าอินทิกรั่ว ในข้อ 1-4

1. \[\int_{0}^{\infty} t \cdot e^{-2t} \cos t \, dt \]

2. \[\int_{0}^{\infty} t^2 \cdot e^{-3t} \sin t \, dt \]

3. \[\int_{0}^{\infty} \frac{e^{-2t} - e^{-6t}}{t} \, dt \]

4. \[\int_{0}^{\infty} e^{-t} \cdot \text{erf}(\sqrt{t}) \, dt \]

ใช้เทคนิคเช่นเดียวกันต่อไปยัง 5.2.2 หาค่าอินทิกรั่วในข้อ 5-8

5. \[\int_{0}^{\infty} e^{-tx^2} \, dx, \quad t > 0 \]

6. \[\int_{0}^{\infty} \frac{x \cdot \sin tx}{x^2 + 1} \, dx, \quad t > 0 \]

7. \[\int_{0}^{\infty} \exp(-x - t^2/x) \cdot x^2 \, dx, \quad t > 0 \]

8. \[\int_{0}^{\infty} \frac{\sin tx}{x} \, dx, \quad t > 0 \]

5.3 สัมประสิทธิ์

ในกรณีสัมประสิทธิ์เป็นสัมประสิทธิ์หรือสัมประสิทธิ์สัมประสิทธิ์โดยการแปลงลาปลาสตัน เก็บสัมประสิทธิ์ของสัมประสิทธิ์ \(Y(t) \) ไปเป็นสัมประสิทธิ์ \(Y(s) \) และคำนวณสัมประสิทธิ์จากสัมประสิทธิ์ \(Y(t) \) ผลรวมสัมประสิทธิ์ \(Y(s) \) ตามสัมประสิทธิ์ \(Y(t) \) โดยตรง ทำให้สัมประสิทธิ์สัมประสิทธิ์สัมประสิทธิ์เป็นสัมประสิทธิ์โดยการแปลงไปสู่ \(Y(s) \) จะเป็นสัมประสิทธิ์ของสัมประสิทธิ์ ดังนั้นสัมประสิทธิ์ในสัมประสิทธิ์โดยการแปลงสัมประสิทธิ์อย่างที่
เนื่องจากในการแปลงอุปกรณ์ของฟังก์ชัน จะปรากฏตัวอยู่ใน $y(0), y'(0), y''(0), \ldots$ ดังนั้นการแปลงลาปลาสจริงเป็นวิธีที่เหมาะสมที่สุดกับปัญหาค่าเริ่มต้น (initial value problems) นั่นคือ เป็นการกำหนดเงื่อนไขให้ที่ $t=0$ ยังคงมีผล ผลลัพธ์เกิดขึ้นในวิธีการของผลการแปลงลาปลาสจริงเป็นผลและขึ้นอยู่กับอยู่ในมิติของสมการที่ให้ สำหรับปัญหาแปรแนวหรือ ที่ $y'(0)$ (เนื่องจากผลตัดค่าตามเวลาของ $y_c(t)$ และผลแปรแนวเฉพาะ $y(0)$ จะนำมารวมกัน เพื่อเป็นผลการคืนสู่ทำง แล้วต้องใช้เป็นเงื่อนไขในเวิลด์ เพื่อให้เกิดผลคำาค่าตามทำง ซึ่งจะเป็นผลตัดค่าตามเวลาของ ทำง

5.3.1 สัมการอินเทเกอร์

ฟังก์ชันที่เริ่มต้น

$$y'(t) + b \cdot y(t) = f(t), \quad t>0 \quad (5.3.1)$$

$$y(0) = y_0$$

โดย b เป็นค่าคงที่

ซึ่งตั้งอยู่ในสมการแนบที่ที่ $y(0)$ ใช้โดยใช้สัญลักษณ์ฟังก์ชัน (integrating factor) e^{bt} มาคูณตลอด ในกรณีจะได้

$$y(t) = y_0 \cdot e^{bt} + \int_0^t e^{b(t-t)} f(t) dt \quad (5.3.2)$$

ผลลัพธ์จากการแปลงลาปลาส ที่สมการ (5.3.1) ได้ให้

$$\mathcal{L}[y(t)] = Y(s)$$

$$\mathcal{L}[y'(t)] = s \cdot Y(s) - y(0)$$

และ

$$\mathcal{L}[f(t)] = F(s)$$

จะได้

$$s Y(s) - y_0 + b Y(s) = F(s) \quad (5.3.3)$$

ซึ่งเป็นสัมการฟีเจอร์จัดเรียบต่ำ จัดเรียบโท้ที่ได้เป็น

$$Y(s) = G(s)(y_0 + F(s)) \quad (5.3.4)$$
โดย

$$G(s) = \frac{1}{s+b}$$

จากสมการ (5.3.4) เหมือนผลการแปลงสัญญาณ จะได้ผลเลยเท่ยอนทับ

สมการ (5.3.2) เนื่องจาก $\frac{1}{s+b}$ เป็นผลการแปลงสัญญาณของ e^{-bt}

และ $G(s) \cdot F(s)$ เป็น ผลการแปลงของผลการประมวล

5.3.2 สิ่งการย้อนด้วย

พิจารณาสิ่งการย้อนด้วยอยู่ในรูป

$$y''(t) + by'(t) + cy(t) = f(t), \ t>0$$

$$y(0) = y_0$$

$$y'(0) = v_0$$

โดย b และ c เป็นค่าคงที่ (สมบัติสัมพันธ์ของ y'' ทำให้เป็นหน่วย เลื่อนความ

สัมพันธ์) ซึ่งสิ่งการสนับสนุนอยู่ ในโจทย์การประมวลอย่างล่วงหน้า

ถ้าให้ผลการแปลงสัญญาณ $[y(t)] = Y(s)$ และ $[f(t)] = F(s)$ แล้ว

สมการ (5.3.5) จะกลายเป็นสิ่งการพีซิต คือ

$$[s^2 Y(s) - sy_0 - v_0] + b[sY(s) - y_0] + cY(s) = F(s)$$

หรือ

$$(s^2 + bs + c) Y(s) = (s+b)y_0 + v_0 + F(s)$$

จากรูปใหม่เพื่อหา $Y(s)$ จะได้

$$Y(s) = G(s)((s+b)y_0 + v_0 + F(s))$$

โดย

$$G(s) = \frac{1}{s^2 + bs + c}$$

สมการ (5.3.7) เขียนได้เป็น

$$Y(s) = \frac{(s+b)y_0 + v_0}{s^2 + bs + c} + G(s)F(s)$$
รับเมื่อผลการแปลงผลักนั้น จะได้ผลเลยเช่นเดียวกับสิ่งที่เราคิดก่อนเพื่อกลัวคือ ผลลัพธ์ทางทางวิชาการอยู่ในรูปที่นั้นเรื่องไร้ผล (หากผลการ
การแปลงผลักนั้นได้โดยวิธีแยกช่วงส่วนอย่าง) รวมทั้งปัญหาทั้งทางทางวิชาการที่เรา
ผลการแปลงผลักนั้นได้โดยใช้ทฤษฎีบทการแปรส่วน

$$Y(t) = \hat{L}^{-1}[G(s)H(s)] + \int_{0}^{t} g(t-\tau)Y(\tau)d\tau \quad (5.3.8)$$

โดย

$$H(s) = (s+b)v_o + v_0$$
$$g(t) = \hat{L}^{-1}[G(s)]$$

5.3.3 สัมการอันดับสูง

พิจารณาสิ่งสัมการที่เขียนอยู่ดังนี้

$$a_n y^{(n)}(t) + a_{n-1} y^{(n-1)}(t) + \ldots + a_1 y = f(t), \quad t > 0 (5.3.9)$$

โดยใช้ผลการแปลงปลายกลายเข้าเรียกว่าสัมการอันดับสูง จะได้

$$a_n [s^n Y(s) - s^{n-1} y(0) + s^{n-2} y'(0) + \ldots + s y^{(n-2)}(0) + y^{(n-1)}(0)]$$

$$+ a_{n-1} [s^{n-1} Y(s) - s^{n-2} y(0) + s^{n-3} y'(0) + \ldots + s y^{(n-3)}(0)] + \ldots + a_1 y(s) = F(s)$$

ชี้แจงที่มาได้เท่านี้

$$(a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1)Y(s) = F(s) + H(s)$$

โดย
\[H(s) = a_0 y(0)s^{n-1} + (a_1 y(0))s^{n-2} + \ldots \]
\[+ (a_1 y(0))^n \ldots a_y^{(n-1)}(0) \]

หรือ

\[Y(s) = G(s)F(s) + H(s) \]

โดย

\[G(s) = \left[\sum_{k=0}^{n} a_k s^k \right]^{-1} \]

บนดิน

\[Y(s) = G(s)F(s) + G(s)H(s) \]

จากสมการ (5.3.11) โดยใช้ผลการแปลงเพลส จะได้ผลเฉลย

\[y(t) = \int_0^t g(t-\tau)F(\tau)d\tau + \mathcal{L}^{-1} \left[G(s)H(s) \right] \]

\[g(t) = \mathcal{L}^{-1} \left[G(s) \right] \]

ข้อสังเกต

1. เนื่องจาก \(G(s) \) เป็นส่วนกลับของฟังก์ชันพหุนามลำดับยนต์ \(n \) ในขณะที่ \(H(s) \)
เป็นฟังก์ชันพหุนามลำดับยนต์ \(n-1 \) ดังนั้น \(G(s)H(s) \) เป็นฟังก์ชันพหุนามที่ซึ่ง
สามารถหาผลการแปลงผลการเพลสเพลสนิ้นได้ง่าย

2. ผลเฉลยในสมการ (5.3.2) และ (5.3.8) สำหรับการเพิ่มการบันทึกหนึ่ง
และลดมาลงตัวขึ้นจะต้องเลือกหลอดผลขึ้นไปในสมการ (5.3.12)

ดังกล่าว

ต่อมา 5.3.1

จงหาผลเฉลยของสมการ

\[y'' + 4y = 0 \]

ซึ่งผล

\[y(0) = 0 , \ y'(0) = 1 \]
ผลเฉลย

ให้ $\mathcal{L}[y(t)] = Y(s)$

โดยการใช้ผลการแปลงลำยเวลา จะได้ว่า

$\mathcal{L}[y^{''} + 4y] = \mathcal{L}[y^{''}] + 4\mathcal{L}[y] = 0$

จากคุณสมบัติความสัมพันธ์ (4.3.7) และเงื่อนไขเริ่มต้น

$\frac{2}{s^2} Y(s) - 1 + 4Y(s) = 0$

หรือ

$Y(s) = \frac{1}{s^2 + 4}$

โดยใช้ผลการแปลงกลับ จะพบว่า

$y(t) = \frac{1}{2} \sin 2t$

ตัวอย่าง 5.3.2

จะหาผลเฉลยของสมการ

$y^{''} - y^{'} - 6y = t$

ซึ่งสอดคล้องเงื่อนไข

$y(0) = 1, y^{'}(0) = 1$

ผลเฉลย

ให้ $\mathcal{L}[y(t)] = Y(s)$

โดยการใช้ผลการแปลงลำยเวลา จะได้ว่า

$\mathcal{L}[y^{''}] - \mathcal{L}[y^{'}] - 6\mathcal{L}[y] = \mathcal{L}[t]$

จากคุณสมบัติความสัมพันธ์ (4.3.7) และเงื่อนไขเริ่มต้น

$\frac{s^2}{s^2 - 1} Y(s) - s - 1 - s Y(s) + 1 - 6 Y = \frac{1}{s - 1}$

หรือ

$Y(s) = \frac{(s - 1)^2 + 1}{(s - 1)(s - 2)(s - 3)}$

หาผลการแปลงกลับ โดยใช้สูตรการกระจายของเอวิท์ จะได้
\[y(t) = \hat{\mathcal{L}}\{Y(s)\} = -\frac{1}{6} t^2 + \frac{2}{3} t - \frac{1}{2} t - 3t \]

จากที่ 5.3.3

\[y'' + 2y' + 2y = g(t) \]

โดย \(y(0) = 0, y'(0) = 0 \)

และ \(g(t) = \begin{cases} 1, & 0 < t < 1 \\ 0, & 1 < t \end{cases} \)

ผล

ให้ \(\hat{\mathcal{L}}\{y(t)\} = Y(s) \)

เนื่องจาก \(\hat{\mathcal{L}}\{g(t)\} = \frac{1-\frac{1}{s}}{s} \)

ดังนั้นโดยการใช้ผลการแปลงลาปลาซและจากเงื่อนไขแรกที่ได้

\[\frac{s^2}{s^2} Y(s) + 2s Y(s) + 2 Y(s) = \frac{1-\frac{1}{s}}{s} \]

หรือ

\[Y(s) = \frac{1-\frac{1}{s}}{s(s^2+2s+2)} \]

\[= \frac{1}{s(s^2+2s+2)} - \frac{\frac{1}{s}}{s(s^2+2s+2)} \]

ใช้ผลการแปลงแลปลาซ

\[y(t) = \hat{\mathcal{L}}^{-1}\left[\frac{1}{s(s^2+2s+2)}\right] - \hat{\mathcal{L}}^{-1}\left[\frac{\frac{1}{s}}{s(s^2+2s+2)}\right] \]

จากผลการกระจายของเอวิไลท์จะได้

\[\hat{\mathcal{L}}^{-1}\left[\frac{1}{s(s^2+2s+2)}\right] = \frac{1}{2} \left[\frac{1}{s} - \frac{2s+1}{s^2+2s+2} \right] \]

\[\hat{\mathcal{L}}^{-1}\left[\frac{\frac{1}{s}}{s(s^2+2s+2)}\right] = \frac{1/2}{s} - \frac{2s+1}{s^2+2s+2} \]

MA 343 379
\[
\frac{1}{2} - \frac{1}{2} (\cos t + \sin t) f^{-t}, t > 0
\]

จากทฤษฎีบท

\[f(t-c) = L^{-1} \left[e^{-cs} F(s) \right] \]

จะได้

\[L^{-1} \left[e^{-s} \frac{1}{s(s^2 + 2s + 2)} \right] = \frac{1}{2} - \frac{1}{2} \left[\cos(t-1) + \sin(t-1) \right] t^{-(t-1)} \quad t > 1 \]

เพราะฉะนั้น

\[
y(t) = \left\{ \frac{1}{2} - \frac{1}{2} (\cos t + \sin t) f^{-t} \right\} u(t) + \left\{ \frac{1}{2} - \frac{1}{2} [\cos(t-1) + \sin(t-1)] t^{-(t-1)} \right\} u(t-1)
\]

ด้วยง่าย 5.3.4

จงแก้สมการ

\[y''(t) + y'(t) = t \]

โดย

\[y(0) = y'(0) = y''(0) = 0 \]

ผลลัพธ์

ให้ \[L \left[y(t) \right] = Y(s) \]

โดยใช้ผลลัพธ์แปลงลาปลาสซ์ จะพบว่า

\[s^3 Y(s) - s^2 y(0) - sy'(0) - y''(0) - sY(s) - y(0) = \frac{1}{s-1} \]

หรือ

\[
Y(s) = \frac{1}{(s-1)(s^3 + s)}
\]

\[
= \frac{1}{s(s-1)(s^2 + 1)}
\]
หาผลการแปลงฟังก์ชั่น โดยใช้สูตรการกระจายของเจฟเวิร์ด จะได้

\[y(t) = \mathcal{L}^{-1} \left[\frac{1}{s(s-1)(s^2+1)} \right] \]

\[= -1 + \frac{1}{2} t + \frac{1}{2} \cos t - \frac{1}{2} \sin t \]

ตัวอย่าง 5.3.5

จงแก้สมการ

\[y^{(4)} + 2y'' + y = u(t-1) \]

โดย \[y(0) = 0, \ y'(0) = 0, \ y''(0) = 1, \ y'''(0) = 0 \]

ผลลัพธ์

ให้ \[\mathcal{L} \{y(t)\} = Y(s) \]

ใช้ผลการแปลงลำดับ และ เงื่อนไขเริ่มต้น จะพบว่า

\[s^4 Y(s) - s^3 Y(0) - s^2 Y'(0) - sY''(0) - Y'''(0) = \frac{s}{s-1} \]

หรือ

\[Y(s) = \frac{s}{s(s^2+1)^2} + \frac{1}{s^2+1} \]

โดยที่

\[\mathcal{L}^{-1} \left[\frac{s}{s^2+1} \right] = \frac{\sin t}{2} \]

\[\mathcal{L}^{-1} \left[\frac{s^2}{s^2+1} \right] = \frac{\sin t - t \cos t}{2} \]

\[\mathcal{L}^{-1} \left[\frac{s}{s^2+1} \right] = \cos t + \frac{t \sin t}{2} - 1 \]

\[\mathcal{L}^{-1} \left[\frac{1}{s^2+1} \right] = (\cos(t-1) + \frac{(t-1) \sin(t-1)}{2} - 1)u(t-1) \]

เพื่อจะมี

\[y(t) = (\cos(t-1) + \frac{(t-1) \sin(t-1)}{2} - 1)u(t-1) - \frac{1}{2} t \sin t \]
จากพื้นฐานที่ 5.3.1-5.3.5 เป็นการแก้สมการที่มีผลิต.derivative เป็นค่าคงที่ แต่อย่างไรก็ตาม เมื่อผลิต.result เป็นอัตโนมัติ การแก้สมการให้แก้ปัญหาได้ชัดเจนอย่างดีจนถึง

ตัวอย่าง 5.3.6

จงแก้สมการ

\[y'' + ay' - 2ay = 1 \]

โดย \(y(0) = y'(0) = 0 \), \(a > 0 \)

ผลลัพธ์

ให้ \(\mathcal{L} [y(t)] = Y(s) \)

ใช้หลักการแปลงลาปลาส

\[\mathcal{L} [y''] + a \mathcal{L} [y'] - 2a Y = \mathcal{L} [1] \]

และ \(\mathcal{L} [ty'] = \frac{-d}{ds} (\mathcal{L} [y']) \) ดังนั้นจะได้

\[s^2 Y(s) - ay(s) - 2a Y(s) = \frac{1}{s} \]

หรือ

\[Y' + \frac{(3a-s^2)}{as} Y = \frac{-1}{as^2} \]

ซึ่งเป็นสมการเชิงอนุพันธ์บิดเบือน, โดยใช้ตัวอย่างประกอบอินทเทกรัล

\[\int \left(\frac{3}{s} - \frac{s}{a} \right) ds = s^3 \int \frac{s - s^2}{2a} \]

คูณด้วย และอินทเทกรัลจะได้

\[Y s^3 \int \frac{s - s^2}{2a} ds = \int \frac{s - s^2}{2a} + C \]

\[Y = \frac{1}{s^3} + \frac{C s^2/2a}{s^2} \]

382

MA 343
เนื่องจาก \(\lim_{s \to \infty} Y(s) = 0 \) (เรื่องนี้จำเป็นต้องการมีผลการแปลงทำให้)

จากที่ ได้ \(C = 0 \) เพราะฉะนั้น

\[
Y = \frac{1}{s}
\]

หากผลการแปลงยกต้น จะได้ผลลัพธ์ดังนี้

\[
Y(t) = \frac{t^2}{2}
\]

ตัวอย่าง 5.3.7
เก็บสูตร

\[
ty'' + y' + ty = 0
\]

โดย \(Y(0) = 1, \ y'(0) = 0 \)

ผลดังนี้

\[
\hat{L}[y(t)] = Y(s)
\]

ต่อไปนี้

\[
\hat{L}[ty''] + \hat{L}[y'] + \hat{L}[ty] = 0
\]

จากสูตรเบื้องต้นสูตร (4.3.4 และ 4.3.8)

\[
\frac{-d}{ds} \left[s^2 Y(s) - sy(0) - y'(0) \right] + s Y(s) - y(0) \frac{-d}{ds} Y(s) = 0
\]

จากที่ \(Y(0) = 1 \) ทีให้ได้

\[
(s^2 + 1) \frac{dY}{ds} + sY = 0
\]

ชิงเป็นสูตรการเชิงอนุพัติ สามารถแยกตัวแปรได้

\[
\frac{dY}{Y} = -sds
\]

\[
\frac{1}{s^2 + 1}
\]

ถ้ากระจายแล้วจัดรูป จะได้

\[
Y(s) = \frac{C}{s^2 + 1}
\]
ถ้าเท่ากับ \((1+s^2)^{-1/2} = 1 - \frac{1}{2} s^2 + \ldots\) เราไม่สามารถหาผลการแปลงฟูร์เนอร์ของ 1, \(s^2, s^4, \ldots\) ได้

(เพราะจุดที่ \(F(s) \to 0\) เมื่อ \(s \to \infty\) ตัวย่อย)

เราพิจารณา

\[
\frac{1}{s(s^2+1)^{1/2}} = \frac{1}{s(1+\frac{s^2}{s^2})^{1/2}} = \frac{1}{s}\left(1-\frac{1}{2s^2}+\ldots\right)
\]

จะพบว่า

\[
Y(s) = C \sum_{n=0}^{\infty} \frac{(-1)^{n}(2n)!}{(2^n n!)^2} \frac{1}{s^{2n+1}}
\]

โดยผลการแปลงฟูร์เนอร์ จะได้

\[
y(t) = C \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2^n n!)^2} t^{2n}
\]

จากเงื่อนไขเริ่มต้น \(y(0) = 1\) จะพบว่า \(C = 1\)

เพราะฉะนั้น ผลเฉลยคือ

\[
y(t) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2^n n!)^2} t^{2n}
\]

หมายเหตุ

เวียรกิจลักษณะในตัวอย่าง 5.3.7 นี้ สมการเบสเซลล์อันดับศูนย์ (Bessel equation) และเวียรกิจผลเฉลยคือ ได้รับสมการเบสเซลล์อันดับศูนย์ เทียบเท่ากับ

เวียรกิจลักษณะ \(y(t) = J_0(t)\)
แบบฝึกหัด 5.3

จากการผลิตของปัญหาเกี่ยวกับเว้นที่เริ่มต้นต่อไปนี้ โดยใช้ผลการแปลงสัมประสิทธิ์

1. $y'' - 4y = 0$, $y(0) = 1$, $y'(0) = 2$
2. $y'' + \omega^2 y = 0$, $y(0) = y_0$, $y'(0) = v_0$
3. $y'' - 5y' + 4y = t^2$, $y(0) = 1$, $y'(0) = 0$
4. $y'' - 4y' + 4y = t^2$, $y(0) = 0$, $y'(0) = 1$
5. $y'' - 2y' + 2y = t$, $y(0) = y'(0) = 1$
6. $y'' = 2y = 2\sin t$, $y(0) = 0$, $y'(0) = -1$
7. $y'' - ay' = -\sinh t$, $y(0) = y'(0) = y''(0) = 0$
8. $y'''' + y'' - y = 9t^2$, $y(0) = 2$, $y'(0) = 4$, $y''(0) = 3$
9. $y'' - 2y'' + y = \cos t$, $y(0) = y'(0) = 0$, $y''(0) = y'''(0) = 1$
10. $ty'' - ty' - y = 0$, $y(0) = 0$, $y'(0) = 1$
11. $y'' + 2ty' - 4y = 1$, $y(0) = y'(0) = 0$
12. $ty'' + 2y' - (t-2)y = 2t^2$, $y(0) = 0$
1. \(y = \frac{1}{2} t^2 \)

2. \(y = y_0 \cos wt + \frac{v_0}{w} \sin wt \)

3. \(y = \frac{1}{6} (10l^t - 3l^2t^2 - 4t) \)

4. \(y = \frac{1}{8} (10tl^2t - 3l^2t + 2l^2 + 4t + 3) \)

5. \(y = \frac{1}{2} [(3\cos t + 4\sin t)l^{-t} + 1 - 1] \)

6. \(y = \frac{1}{3} t^3 + 2l^{-t} + 2 \)

7. \(y = \frac{1}{8} \cosh t - \frac{1}{72} \cosh 3t - \frac{1}{9} \)

8. \(y = l^t + l^{2t} + \frac{9}{52} l^{-t} \)

9. \(y = \frac{1}{4} [(3t-2)\sinh t + (2t-1) \cosh t + \cos t] \)

10. \(y = tl^t \)

11. \(y = \frac{t^2}{2} \)

12. \(y = \sinh t \)
ผลการเปลี่ยนแปลงสำหรับรายการของมิติที่เรียกว่าการเปลี่ยนแปลงที่ตั้งขึ้น t หนังสือ ให้

\[\hat{L} [u(x,t)] = U(x,s) \]

ดังนั้น

\[\hat{L} [u_{xx}(x,t)] = \int_0^\infty u_{xx}(x,t) e^{-st} \, dt \]

\[= \frac{d^2}{dx^2} \int_0^\infty u(x,t) e^{-st} \, dt \]

\[= \frac{d^2 U}{dx^2} = U_{xx} \]

และ

\[\hat{L} [u_t(x,t)] = \int_0^\infty u_t(x,t) e^{-st} \, dt \]

โดยการวิธีการที่ละส่วน

\[= \left. u(x,t) e^{-st} \right|_0^\infty + s U(x,s) \]

โดยให้ค่าทางใดๆ ในรูปแบบที่จะ��หนังสือ u(x,t) → 0 เมื่อ x → ∞ ส่วน u(0,t)
แล้วแต่ตัวที่ในรูปแบบและสูตร
แต่อย่างไรก็ตาม ให้ทั้งแผลการเปลี่ยนแปลงทางสูตรไม่เหมือนกับการวิเคราะห์
ของสมการลาปลาส หรือผลของการผลการผลการแผลงของ u(x,y) เทียบกับ x
ซึ่งได้ว่า

\[\hat{L} [u_{xx}(x,y)] = s^2 U(s,y) - s u(0,t) - u_x(0,t) \]

จะพบว่าตัวที่ต่างกันส่วน และ s ที่ขอบเขต x=0 ซึ่งมีปัญหาความ
เบี้ยсутแต่ละ เกิดไปได้ไม่ในการวิเคราะห์ความรู้เกี่ยวกับให้ทั้งหมดของสูตรและ
ผลการขอความรู้ที่ขอบเขต ซึ่งอาจที่ไม่สอดคล้องกัน

เนื่องจากในบทที่ 3 เราได้ถึงความหมายทางทางของสมการความ
รู้และสมการคล้ายกัน ดังนั้นเราจะสามารถแก้ปัญหาต่าง ๆ โดยใช้
ผลการเปลี่ยนแปลงทางสูตร

5.4.1 สลักการความเข้าใจ

ตัวอย่าง 5.4.1

พิจารณาแก้โจทย์แนวด้านที่ 2 ตามที่กล่าวมาในเรื่องความร้อนสัมพันธ์กับเวลาดังอยู่ เมื่อมีดังนั้นเป็นคุณสมบัติ เราจะได้รูปแบบที่ใกล้เคียง

\[u_{xx} = \frac{-a^2}{u_t}, \quad 0 < x < \infty, \quad t > 0 \]

B.C. \[u(0,t) = f(t), \quad u(x,t) \rightarrow 0 \text{ เมื่อ } x \rightarrow \infty \] (5.4.1)

I.C. \[u(x,0) = 0, \quad 0 < x < \infty \]

ผลลัพธ์

โดยใช้หลักการแปลงเวลาสำหรับสมการเชิงอนุพันธ์ย่อยและการแปลงเวลาของเชิงอนุพันธ์ย่อย จะได้

\[u_{xx} = \frac{-a^2}{u_t}, \quad 0 < x < \infty \] (5.4.2)

B.C. \[u(0,s) = F(s), \quad u(x,s) \rightarrow 0 \text{ เมื่อ } s \rightarrow \infty \]

โดยที่ \(\hat{L}[u(x,t)] = U(x,s) \) และ \(\hat{L}[f(t)] = F(s) \)

คำวิธีหัวใจของสมการเชิงอนุพันธ์รูปแปลงเวลาดังกล่าวคือ

\[U(x,s) = A(s) \frac{x s}{a} - B(s) \frac{1}{x s/a} \] (5.4.3)

โดย \(A(s) \) และ \(B(s) \) เป็นฟังก์ชันที่ไม่สอดคล้องในของ \(s \) เพื่อให้สอดคล้อง

\[U(x,s) \rightarrow 0 \text{ เมื่อ } x \rightarrow \infty \] ต้องให้ \(A(s) = 0 \) และจากรูปไขอย่างเช่น

\[U(0,s) = F(s) \] จะได้ \(B(s) = F(s) \)

ดังนั้น

\[U(x,s) = F(s) \frac{-x s/a}{x s/a} \] (5.4.4)

โดยการใช้ทฤษฎีบทค่าเรซิูสในระนาบเชิงซ้อน (ดูที่ 2.5.1 ของ Andrews) จะพบว่า

\[\hat{L}^{-1} \left[-x s/a \right] = -x^2/4a^2 \text{ เมื่อ } x = 2a s^{1/2} \] (5.4.5)

เพราะฉะนั้น ใช้ทฤษฎีบทผลการกระจาย จะได้ผลเฉลยคือ

388

MA 343
\[u(x,t) = \frac{x}{2\alpha \sqrt{t}} \int_0^t f(\tau) \exp \left(\frac{-x^2}{4\alpha (t-\tau)} \right) d\tau \quad (5.4.6) \]

ซึ่งส่วน (5.4.6) สามารถเขียนได้การบวก โดยเปลี่ยนตัวแปรให้

\[z = \frac{x^2}{2\alpha \sqrt{t}} \]

จะได้

\[u(x,t) = \frac{1}{\sqrt{\pi}} \int_{x/2\alpha \sqrt{t}}^{\infty} \exp \left(\frac{-(t-z)^2}{4\alpha z^2} \right) dz \quad (5.4.7) \]

ในการพิจารณา เมื่อตัวแปรที่ตรงกับเทอมโดย \(f(t) = T_0 \) (ค่าคงที่) จากส่วน (5.4.7) จะได้

\[u(x,t) = T_0 \text{erfc} \left(\frac{x}{2\alpha \sqrt{t}} \right) \quad (5.4.8) \]

ข้อสังเกต

ถ้า \(f(t) = T_0 \) แล้ว \(\mathcal{L} \{ f(t) \} = F(s) = \frac{1}{s} \)

ดังนั้นจากส่วน (5.4.4) จะพบว่า

\[U(s) = \frac{T_0}{s} \exp \left[-\frac{x^2 \sqrt{s}}{4\alpha} \right] \]

จากตัวอย่าง 4.7.7 เราทราบว่า

\[\mathcal{L}^{-1} \left[\frac{1}{s} \exp \left[-\frac{x^2 \sqrt{s}}{4\alpha} \right] \right] = \text{erfc} \left(\frac{x}{2\alpha \sqrt{t}} \right) \]

\[u(x,t) = T_0 \text{erfc} \left(\frac{x}{2\alpha \sqrt{t}} \right) \]

ตัวอย่าง 5.4.2

พิจารณาแก้สมการของอุณหภูมิที่รูปแบบเชิงกิ้งที่มีอุณหภูมิเริ่มต้นเป็นสูงที่สุด

\[x=0 \]

อุณหภูมิเป็นสูงที่สุด และที่ \(x=1 \) อุณหภูมิจะเป็น \(T_0 \) ดังนั้นจะมีข้อมูลทางทินดูทางต่อไปนี้

\[u_{xx} = a u_t , \quad 0 < x < 1 , \quad t > 0 \]

B.C. \[u(0,t) = 0 , \quad u(1,t) = T_0 \quad (5.4.9) \]

I.C. \[u(x,0) = 0 , \quad 0 < x < 1 \]

ผลลัพธ์

โดยการใช้ผลการแปลงเวลาต่อสมการ (5.4.9) จะทำให้ได้

MA 343 389
\[
U_{xx} - \frac{s}{a} U = 0, \quad 0 < x < 1
\]

B.C. \quad U(0,x) = 0, \quad U(1,x) = \frac{T_0}{s}

\text{จงหาค่า} \quad A(s) \quad \text{และ} \quad B(s)

\text{จากรูป} \quad \left. U(x,s) = A(s) \cosh \left(\sqrt{s} x / a \right) + B(s) \sinh \left(\sqrt{s} x / a \right) \right| \quad (5.4.11)

\text{จากเงื่อนไขขอบเขต} \quad U(0,s) = 0 \quad \text{จะได้} \quad 0 = A(s)

\text{และจาก} \quad U(1,s) = 0 = \frac{T_0}{s} \quad \text{จะได้} \quad \frac{T_0}{s} = B(s) \sinh \left(\sqrt{s} / a \right)

\text{ดังนั้น} \quad U(x,s) = \frac{T_0}{s} \frac{\sinh \left(x \sqrt{s} / a \right)}{\sinh \left(\sqrt{s} / a \right)}

\quad \left. \quad \text{จากรูป} \quad 4.7.8 \quad \text{จะทำให้หาผลการแปลงพัก} \quad \text{ได้ผลเฉลยเป็น} \quad \text{แทนด้วย} \quad (5.4.12)

\text{ผล} \quad u(x,t) = T_0 \sum_{n=0}^{\infty} \frac{\text{erfc} \left(\frac{1-x+2n}{2a\sqrt{t}} \right) - \text{erfc} \left(\frac{1+x+2n}{2a\sqrt{t}} \right)}{2a\sqrt{t}}

\text{หมายเหตุ} \quad 1. \quad \text{วิธีหาค่า} \quad \text{ในความ} \quad \text{ด้วยสมการ (5.4.9) \quad ก็จะ} \quad \text{ทำ} \quad \text{ผลเฉลย} \quad \text{ในรูป} \quad \text{แทนด้วย} \quad (5.4.13)$

\text{แทนด้วย} \quad u(x,t) = T_0 \left[x + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (\sin \frac{n \pi x}{a}) \cdot \frac{2 \sqrt{2 \pi} a^2 t}{n} \right]

\text{ซึ่งแปลง} \quad \text{จะทำ} \quad \text{สมการ (5.4.13)}

390 \quad \text{MA 343}
2. จากสมการ (5.4.12) ถ้าผลการแปลงพจน์โดยใช้ทฤษฎีค่าเรียบร้อยจะได้แสดงเช่นชี้ยอนท้ายสมการ (5.4.14)

5.4.2 สมการในตัว

ตัวอย่าง 5.4.3

ให้ \(u(x,t) \) แทนระยะระหว่างพื้นที่ของเส้นเรียกว่าสัญญาณ ปลายของหนึ่งจุดที่ \(x = 0 \) สมมติว่า เจริญเส้นเรียกอยู่ในสภาวะที่สอง ปลายปลายพื้นที่ไม่เห็นเด่นใด ๆ ถูกทำให้เคลื่อนที่ในบางจุดโดยที่ \(u(0,t) = f(t) \) เหมาะกับเส้นเรียกว่าสัญญาณ ดังนั้น

\[u_0 = c^2 u_0^t, \quad 0 < x < \infty, \quad t > 0 \]

B.C. \[u(0,t) = f(t), \quad u(x,t) \rightarrow 0 \quad \text{เมื่อ} \quad x \rightarrow \infty \quad (5.4.15) \]

I.C. \[u(x,0) = 0, \quad u_t(x,0) = 0, \quad 0 < x < \infty \]

ผลลัพธ์

โดยใช้ผลการแปลงสัญญาณ \((5.4.15) \) จะได้

\[u_{xx} - \frac{s^2}{c^2} u = 0, \quad 0 < x < \infty \quad (5.4.16) \]

B.C. \[U(0,s) = F(s), \quad U(x,s) \rightarrow 0 \quad \text{เมื่อ} \quad x \rightarrow \infty \]

ซึ่งเป็นสมการเชิงอนุกรม ผลง่ายได้ในรูป

\[U(x,s) = A(s) e^{-sx/c} + B(s) e^{sx/c} \]

จากเงื่อนไขขอบเขต \(U(x,s) \rightarrow 0 \) เมื่อ \(x \rightarrow \infty \) ทำให้ได้ \(B(s) = 0 \) และจาก

เงื่อนไขขอบเขต \(U(0,s) = F(s) \) ทำให้ได้ \(A(s) = F(s) \) ดังนั้น

\[U(x,s) = F(s) e^{-sx/c} \quad (5.4.17) \]

โดยสมบัติการแปลงพจน์ตามทฤษฎี 4.6.1 จะพบว่า

\[u(x,t) = f(t-x/c) u(t-x/c) \quad ; \quad x > 0, \quad t > 0 \]
รูปที่ 5.4.4

สมการเดินเรือที่หมุนอยู่ที่จุด $x = 0$ และมีความเร็ว v ที่ $y = c$ เป็นอัตราเร็ว $(x = vt)$ ดังสมการ

$$c^2 u_{xx} = u_t + f_0 b(t - x/v), \quad 0 < x < \infty, \quad t > 0$$

B.C. $u(0,t) = 0$, $u(x,t) \to 0$ เมื่อ $x \to \infty$

I.C. $u(x,0) = 0$, $u_t(x,0) = 0$, $0 < x < \infty$

ผลลัพธ์

โดยใช้ผลการแปลงลาปลาสกับสมการ (5.4.19) จะได้

$$U_{xx} - s^2 U = f_0 \frac{t}{s} e^{-sx/v}, \quad 0 < x < \infty$$

B.C. $U(0,s) = 0$, $U(x,s) \to 0$ เมื่อ $x \to \infty$

ที่ $t = s$ สมการเชิงพหุมิตแบบหนึ่งกลับ $t = s$ ได้ผลการแปลงในรูปผลรวมของผล

$$U(x,s) = A(s) \frac{t}{s} e^{-sx/c} + B(s) \frac{t}{s} e^{sx/c} + \text{ผลลัพธ์เฉพาะ}$$

(5.4.21)

โดยผลลัพธ์เฉพาะคือ

$$f_0 v^2 w(t - x/v), \quad v \neq c$$

$$\left\{ \begin{array}{l}
\frac{f_0 v^2}{(c - v)^2} \frac{t}{s} e^{-sx/v}, \quad v \neq c \\
\frac{-f_0 x}{2cs} \frac{t}{s} e^{sx/c}, \quad v = c
\end{array} \right.$$

ใช้จุดใดจะมีขนาด $U(x,s) \to 0$, เมื่อ $x \to \infty$ จะได้ $B(s) = 0$

ใช้จุดใดจะมีขนาด $U(0,s) = 0$ จะพบว่า
สำหรับ \(v \neq c \), \(A(s) = \frac{-f_0v^2}{(c^2-v^2)s^2} \)

สำหรับ \(v = c \), \(A(s) = 0 \).

เพื่อจะนั้น จาก (5.4.12) จะได้

\[
U(x,s) = \begin{cases}
\frac{f_0v^2}{2(c^2-v^2)s^2} (1 -\frac{-sx}{v} - \frac{-sx}{c}), & v \neq c \\
-\frac{f_0x}{2cs} \frac{-sx}{c}, & v = c
\end{cases}
\] (5.4.22)

โดยใช้ผลการแปลงฟูร์รีเยตามทฤษฎีบท 4.6.1 จะพบว่า

\[
u(x,t) = \begin{cases}
\frac{f_0v^2}{c^2-v^2} \left[I(t-\frac{x}{v})u(t-\frac{x}{v}) - (t-\frac{x}{c})u(t-\frac{x}{c}) \right], & v \neq c \\
-\frac{f_0x}{2c} u(t-\frac{x}{v}), & v = c
\end{cases}
\] (5.4.23)
แบบฝึกหัด 5.4

จงใช้ผลการแปลงกลาสฮันแก้ปัญหาของสมการต่อไปนี้

1. \(u_{xx} = a^2 u_t, \quad 0 < x < 1, \quad t > 0 \)
 B.C. \(u(0,t) = T_0, \quad u(1,t) = 0 \)
 I.C. \(u(x,0) = 0 \)

2. \(u_{xx} = a^2 u_t, \quad 0 < x < 1, \quad t > 0 \)
 B.C. \(u(0,t) = 0, \quad u(1,t) = 0 \)
 I.C. \(u(x,0) = T_0 \)

3. \(0.25 u_{xx} = u_t - 1, \quad 0 < x < 10, \quad t > 0 \)
 B.C. \(u(x,0) = 0, \quad u(10,t) = 20 \)
 I.C. \(u(x,0) = 50 \)

4. \(u_{xx} = c^2 u_{tt}, \quad 0 < x < \infty, \quad t > 0 \)
 B.C. \(u(0,t) = 0, \quad u(x,t) \to 0 \quad \text{when} \ x \to \infty \)
 I.C. \(u(x,0) = 0, \quad u_t(x,0) = v_0 \)

5. \(u_{xx} = c^2 u_{tt}, \quad \theta > x > \infty, \quad t > 0 \)
 B.C. \(u(0,t) = 0, \quad u(x,t) \to 0 \quad \text{when} \ x \to \infty \)
 I.C. \(u(x,0) = A, \quad u_t(x,0) = 0 \)