3.8 เส้นแนวocalypseและกระบบเส้นผ่านศูนย์ (Principal Normal Line and Osculating Plane)

เส้นตรงที่ผ่านจุด \(R_0 \) บนเส้นโค้ง \(C \) ช่วงขนาดกับเหตุการณ์แนวสะอาด

ทั่วไป 3.8.1 เรียกเส้นตรงที่ผ่านจุด \(R_0 \) ช่วงเส้นโค้ง \(C \)

สมการของเส้นแนวสะอาดที่จุด \(R_0 \) คือ

\[\vec{r} = \vec{r}_0 + \lambda \vec{r}_T, \quad -\infty < \lambda < \infty \]

\[\vec{r} = \vec{r}_0 + \lambda (\vec{r}/|\vec{r}|) \]

ระยะที่ขนานกับเวกเตอร์หน่วยสัมพัทธ์และเวกเตอร์หน่วยแนวสะอาดเรียกว่า ระยะ

สมมติสมการของ \(C \) ที่จุด \(R_0 \) คือ

\[\left[(\vec{r} - \vec{r}_0) \cdot \vec{n} \right] = 0 \]

จาก \(\vec{T} = \frac{d\vec{r}}{ds} = \vec{r}_T \)

\[\vec{T} = \frac{d^2\vec{r}}{ds^2} = \vec{r}_N \] ขนานกับ \(\vec{n} \)

และจุดที่ \(\lambda \neq 0 \)

จะได้สมการของเส้นแนวสะอาดที่จุด \(R_0 \) คือ

\[\vec{r} = \vec{r}_0 + \mu \vec{r}_T, \quad -\infty < \mu < \infty \]

สมการระยะทางผ่านศูนย์ (Principal Normal Line)

\[\left[(\vec{r} - \vec{r}_0) \cdot \vec{r}_T \right] = 0 \]
รูป 3.8.1

ลัทธิการ 3.8.1

\[\mathbf{R} = \cos t \mathbf{i} + \sin t \mathbf{j} + tk \]

\[\mathbf{R}' = -\sin t \mathbf{i} + \cos t \mathbf{j} + k \]

\[|\mathbf{R}'| = \sqrt{2} \]

\[\mathbf{T} = \mathbf{R}'/|\mathbf{R}'| \]

\[= \frac{1}{\sqrt{2}}(-\sin t \mathbf{i} + \cos t \mathbf{j} + k) \]

\[\frac{d\mathbf{R}}{dt} = \left(\frac{1}{\sqrt{2}}\right)(-\cos t \mathbf{i} - \sin t \mathbf{j}) \]

\[= -\frac{1}{\sqrt{2}}(\cos t \mathbf{i} + \sin t \mathbf{j}) \]

\[\frac{d\mathbf{R}}{dt} = \frac{d\mathbf{T}}{dt}/|d\mathbf{T}/dt| \]

\[= -\frac{1}{\sqrt{2}}(\cos t \mathbf{i} + \sin t \mathbf{j}) \]

\[\mathbf{R}(\frac{\pi}{2}) = \frac{\pi}{2} \mathbf{j} + \frac{\pi}{2} \mathbf{k} \]

\[\mathbf{R}(\frac{3\pi}{2}) = -\frac{1}{\sqrt{2}} \mathbf{i} + (1/\sqrt{2}) \mathbf{k} \]

\[\mathbf{R}(\frac{5\pi}{2}) = -(1/2) \mathbf{j} \]
สมการเส้นแนวจากที่ \(t = \frac{\pi}{2} \) คือ

\[
\vec{r} = \vec{r}(t/2) + \lambda \vec{r}'(t/2), \quad -\infty < \lambda < \infty
\]

\[
= \lambda (\vec{j} \cdot \vec{r}'/2 \vec{k}) + \lambda (-1/2 \vec{j}), \quad -\infty < \lambda < \infty
\]

\[
= \lambda (-1/2 \vec{j} \cdot \vec{r}'/2 \vec{k}) - \vec{r}'/2 \vec{k}, \quad -\infty < \lambda < \infty
\]

\[\text{ลบ}\]

หรือ

\[
x = 0
\]

\[
y = 1 - \lambda/2
\]

\[
z = \vec{r}'/2
\]

\[\text{ลบ}\]

สมการของระนาบเส้นผ่าตัดที่ \(t = \frac{\pi}{2} \) คือ

\[
\begin{vmatrix}
\vec{x} & y-1 & z-\vec{r}/2 \\
-1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & -1/2 & 0
\end{vmatrix} = 0
\]

\[
x(1/2\sqrt{2})-(y-1)(0)+(z-\vec{r}/2)(1/2\sqrt{2}) = 0
\]

\[
x + z - \vec{r}/2 = 0
\]

\[
x + z = \vec{r}/2
\]

\[\text{ลบ}\]
แบบฝึกหัด 3.8

จากข้อ 1 ถึงข้อ 4 จะหาสมการเส้นแนวนอนเจาะของเส้นโค้งที่กำหนดให้ ณ จุดที่
กำหนดให้

1. \(\vec{R} = (1+t)\vec{i} + (3-t)\vec{j} + (2t+4)\vec{k}, \quad t = 3 \)
2. \(\vec{R} = t\vec{i} + 3t^2\vec{j} + 3t^3\vec{k}, \quad t = 2 \)
3. \(\vec{R} = \frac{c^3}{3}\vec{i} + 2t\vec{j} + 2\vec{k}, \quad t = 1 \)
4. \(\vec{R} = (t-\sin t)\vec{i} + (1-\cos t)\vec{j} + t\vec{k}, \quad t = 0 \)
5. จงแสดงว่า เส้นโค้ง \(\vec{R} = \vec{R}(t) \) จะได้ว่า

เวกเตอร์ \(\vec{R} \) ขนานกับ ระบบพื้นผิวพารалเลล และ สวนประกอบ เมื่อเทียบกับ \(\vec{i} \) และ \(\vec{n} \)
ถือ \(\vec{i} \) และ \(\vec{k} \) ตามลำดับ

6. ก. ถ้า \(\vec{R} \) และ \(\vec{R}^\prime \) เป็น สองเวกเตอร์เส้นที่จุด \(R \) ของเส้นโค้ง \(\vec{R} = \vec{R}(t) \) จงแสดงว่า

ระบบเส้นผิวพารалเลลที่จุด \(R \) ถือ \([(\vec{R} - \vec{R}^\prime)^\times] = 0 \)

ข. ใช้สูตรนี้ในการหาสมการ ระบบเส้นผิวพารалเลล ของเส้นโค้ง

\(\vec{R} = t\vec{i} + 2t\vec{j} + 3t^2\vec{k}, \quad t = 1 \)

จากข้อ 7 ถึงข้อ 11 จะหาสมการ ระบบเส้นผิวพาระบิด ของเส้นโค้งที่กำหนดให้ ณ จุดที่กำหนด
ให้

7. \(\vec{R} = 2t\vec{i} + t^2\vec{j} + t^3\vec{k}, \quad t = 1 \)
8. \(\vec{R} = 3t\vec{i} + 3t^2\vec{j} + 2t^3\vec{k}, \quad t = 0, \quad t = 1 \)
9. \(\vec{R} = 4\cos t\vec{i} + 4\sin t\vec{j} + 2t\vec{k}, \quad t = \frac{\pi}{3} \)
10. \(\vec{R} = (e^{t/2} - e^{-t/2})\vec{i} + (e^{t/2} - e^{-t/2})\vec{j} + 2t\vec{k}, \quad t = 0 \)
11. \(\vec{R} = e^{t\cos t}\vec{i} + e^{t\sin t}\vec{j} + e^{t}\vec{k}, \quad t = 0 \)

12. จงแสดงว่าเส้นโค้งเป็นเส้นโค้งในระบบ เท่า ระบบเส้นเส้นพาระบิด ทั่วไปแต่ตัดกันที่จุด
เปิดกัน
3.9 ทุกแนว (Binormal)

ให้ \(\vec{R} = \vec{R}(s) \) เป็นเส้นโค้งบนพื้นผิว \(C \) ที่มีจุดจีน \(s \geq 2 \) ซึ่ง \(\vec{N} \) คือเนื้อเส้นแสดงจุดเริ่มต้นบริเวณบน \(C \) จะมีเวกเตอร์หน่วย 2 เวกเตอร์ที่ตั้งฉากกัน คือ เวกเตอร์หน่วยสัมผัส \(\vec{T} \) และเวกเตอร์หน่วยแนวนำทาง \(\vec{N} \) ที่มีจุดเริ่มต้น \(\vec{B} \) ซึ่ง

\[
\vec{B} = \vec{B}(s) = \vec{T}(s) \times \vec{N}(s)
\]

เวกเตอร์ \(\vec{B} \) ว่า เวกเตอร์ครุณานาถ (unit binormal vector)

\(\vec{B} \) มีความถูกต้อง และ มีความยาว 1 หน่วย และ \((\vec{T}, \vec{N}, \vec{B}) \) ทำให้เกิด right-handed orthonormal triplet เรียกวา moving trihedron ของ \(C \) ตัวอย่าง 3.9.1

![Diagram](image)
เส้นตรงที่ผ่านจุด R_0 และแนวนั้น \hat{b} เรียกว่า เส้นคู่แนวฉาก (binormal line) ของ C ที่จุด R_0

สมการของเส้นคู่แนวฉากที่จุด R_0 คือ

$$\vec{r} = \vec{R}_0 + \lambda \vec{b}, \quad -\infty < \lambda < \infty$$

ระบายที่ผ่านจุด R_0 บน C ขนานกับ \hat{b} และ \hat{N} เมื่อระบายผ่านเส้นดังกล่าวคู่แนวฉาก (rectifying plane)

ที่จุด R_0

สมการของระบายผ่านเส้นดังกล่าวคู่แนวฉากที่จุด R_0 คือ

$$(\vec{r} - \vec{R}_0) \cdot \hat{N} = 0$$

คุณสมบัติที่จุด R_0 บน C จะได้เส้น และระบายที่ค่อยไปนี้

- เส้นเส้นผิด:
 $$\vec{r} = \vec{R}_0 + \lambda \hat{T}$$

- เส้นแนวฉาก:
 $$\vec{r} = \vec{R}_0 + \lambda \hat{N}$$

- เส้นคู่แนวฉาก:
 $$\vec{r} = \vec{R}_0 + \lambda \hat{b}$$

ระบายแนวฉาก:

$$(\vec{r} - \vec{R}_0) \cdot \hat{T} = 0$$

ระบายผ่านเส้นดังกล่าวคู่แนวฉาก:

$$(\vec{r} - \vec{R}_0) \cdot \hat{N} = 0$$

ระบายเส้นผจญปั้น:

$$(\vec{r} - \vec{R}_0) \cdot \hat{b} = 0$$
Diagram and mathematical expressions are provided.

Page 161
สมการเส้นคู่แนวฉากที่ $t=t_0$ คือ

$$
\vec{r} = \vec{R}(t_0) + \lambda \vec{v}(t_0)
$$

$$
\vec{r} = (a\cos t_0 + a\sin t_0\hat{i} + b t_0 \hat{j} + \lambda ((a^2 + b^2)^{-1/2}(bsin t_0 - b\cos t_0\hat{i} + a\hat{k}))
$$

$$
= (acost_0 + \lambda b(a^2 + b^2)^{-1/2}\sin t_0\hat{i} + (a\sin t_0 + \lambda b(a^2 + b^2)^{-1/2}\cos t_0\hat{j})
$$

$$
+ (bt_0 + a\lambda(a^2 + b^2)^{-1/2}\hat{k}), \quad -\infty < \lambda < \infty
$$

ถ้าเปลี่ยนตัวแปรเสริม โดยให้ $\sigma = \lambda(a^2 + b^2)^{-1/2}$ จะได้ว่า

$$
\vec{r} = (acost_0 + \theta b\sin t_0\hat{i} + (asin t_0 - \theta b\cos t_0\hat{j})\hat{j} + (bt_0 + a\sigma)\hat{k}, \quad -\infty < \theta < \infty
$$

สมการระยะห่างเส้นคู่แนวฉากคู่แนวฉากที่ $t=t_0$ คือ

$$(\vec{r} - \vec{R}(t_0)), \vec{v}(t_0) = 0$$

$$
[(x-acost_0)\hat{i} + (y-asint_0)\hat{j} + (z-bt_0)\hat{k}] \cdot (-\cos t_0\hat{i} - \sin t_0\hat{j}) = 0
$$

$$(x-acost_0)(-\cos t_0) + (y-asint_0)(-\sin t_0) = 0$$

$$-\cos t_0 x + \cos t_0 y + \sin t_0 y + a = 0$$

ระยะห่างเส้นคู่แนวฉากคู่แนวฉากในแบบ Z

ค่อย

162 MA 434
\[\vec{R} = (3t - t^3) \hat{i} + 3t^2 \hat{j} + (3t + t^3) \hat{k} \]

\[\vec{R}' = (3 - 3t^2) \hat{i} + 6t \hat{j} + (3 + 3t^2) \hat{k} \]

\[|\vec{R}'| = 3 \sqrt{(1-t^2)^2 + 4t^2 + (1+t^2)^2} \]

\[= 3 \sqrt{1 - 2t^2 + 4t^2 + 1 + 2t^2 + t^4} \]

\[= 3 \sqrt{1 + t^4 + 2t^2} \]

\[= 3 \sqrt{2} (1 + t^2) \]

\[\vec{T} = \frac{\vec{R}'}{|\vec{R}'|} = \frac{1}{\sqrt{2} (1 + t^2)} \left((1-t^2) \hat{i} + 2t \hat{j} + (1+t^2) \hat{k} \right) \]

\[\frac{d\vec{T}}{ds} = \frac{d\vec{T}}{dt} \left(\frac{ds}{dt} \right) \]

\[\frac{d\vec{T}}{dt} = \frac{1}{\sqrt{2}} \left(-4t \hat{i} + 2(1-t^2) \hat{j} \right) \]

\[\frac{d\vec{T}}{ds} = \frac{-2t \hat{i} + (1-t^2) \hat{j}}{3(1+t^2)^3} \]

\[|\frac{d\vec{T}}{ds}| = \frac{\sqrt{4t^2 + (1+t^2)^2}}{3(1+t^2)^3} \]

\[= \frac{(4t^2 + 1 + 2t^2 + t^4)^{1/2}}{3(1+t^2)^3} \]

\[= \frac{(1 + 2t^2 + t^4)^{1/2}}{3(1+t^2)^3} \]

\[= \frac{1 + t}{3(1+t^2)^{3/2}} \]

\[\vec{N} = \frac{\frac{d\vec{T}}{ds}}{|\frac{d\vec{T}}{ds}|} \]

\[= \frac{-2t \hat{i} + (1-t^2) \hat{j}}{(1+t^2)} \]
\[
\vec{B} = \vec{T} \times \vec{N} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
\frac{1-t^2}{\sqrt{2}(1+t^2)} & \frac{2t}{\sqrt{2}(1+t^2)} & \frac{1+t^2}{\sqrt{2}(1+t^2)} \\
\frac{-2t}{1+t^2} & \frac{1-t^2}{1+t^2} & 0 \\
\end{vmatrix}
\]

\[
= \frac{1}{\sqrt{2}(1+t^2)^2} \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
1-t^2 & 2t & 1+t^2 \\
-2t & 1-t^2 & 0 \\
\end{vmatrix}
\]

\[
= \frac{1}{\sqrt{2}(1+t^2)^2} \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
(-1+t^2)(1-t^2) & -j(2t(1+t^2)) \\
+\vec{k}(1-t^2)^2+4t^2 \\
\end{vmatrix}
\]

\[
= \frac{1}{\sqrt{2}(1+t^2)^2} \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
(-1+t^2)(1-t^2) & -2t(1+t^2) \\
+\vec{k}(1-t^2)^2 \\
\end{vmatrix}
\]

\[
= \frac{1}{\sqrt{2}(1+t^2)} \left[(-1+t^2)(1-t^2)-2t(1+t^2) \right] \vec{k}
\]

สมบัติ 3.9.8

\[
\vec{T} = 3t^2 \vec{i} + 2t^3 \vec{j} + 3t \vec{k} \quad \text{เมื่อ} \quad t = 1 \quad \text{จงวัด} \quad \vec{T}, \vec{N}, \vec{B}, \vec{K}
\]

วิธีทำ

\[
\frac{d\vec{R}}{dt} = 6t \vec{i} + 6t^2 \vec{j} + 3\vec{k}
\]

\[
\left| \frac{d\vec{R}}{dt} \right| = \sqrt{36t^2 + 36t^4 + 9}
\]

\[
= \sqrt{36t^4 + 4t^2 + 1}
\]

\[
= 3(2t^2 + 1)
\]

\[
= \frac{\vec{R}}{\left| \frac{d\vec{R}}{dt} \right|}
\]

\[
= \frac{2t}{2t^2 + 1} \vec{i} + \frac{2t^2}{2t^2 + 1} \vec{j} + \frac{\vec{k}}{2t^2 + 1}
\]

\[
\frac{dT}{dt} = \frac{2-4t^2}{(2t^2 + 1)^2} \vec{i} + \frac{4t}{(2t^2 + 1)^2} \vec{j} - \frac{4t}{(2t^2 + 1)^2} \vec{k}
\]
\[
\frac{dT}{ds} = \frac{dT}{dt} / \left| \frac{dT}{dt} \right|
\]
\[
= \frac{(2-4t^2)\hat{i}+4t\hat{j}-4tk}{\sqrt{9(2t^2+1)^2}}
\]
\[
= \frac{\sqrt{4(1+4t^2+4t^4)}}{9(2t^2+1)^2}
\]
\[
= \frac{2}{3(2t^2+1)^2}
\]

\[
\vec{N} = \frac{dT}{ds} / \left| \frac{dT}{ds} \right|
\]
\[
= \frac{(2-4t^2)\hat{i}+4t\hat{j}-4tk}{2(2t^2+1)}
\]

\[
t = 1, \quad \vec{T} = 2/3 \hat{i} + 2/3 \hat{j} + 1/3 \hat{k}
\]

\[
\vec{N} = -2/6 \hat{i} + 4/6 \hat{j} - 4/6 \hat{k}
\]

\[
= -1/3 \hat{i} + 2/3 \hat{j} - 2/3 \hat{k}
\]

\[
\vec{b} = \vec{T} \times \vec{N} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2/3 & 2/3 & 1/3 \\
-1/3 & 2/3 & -2/3
\end{vmatrix}
\]
\[
= \vec{i}(\frac{4}{9} + \frac{2}{9}) - \vec{j}(\frac{-4}{9} + \frac{1}{9}) + \vec{k}(\frac{4}{9} + \frac{2}{9})
\]
\[
= -6/9 \hat{i} + 13/9 \hat{j} + 6/9 \hat{k}
\]

\[
= -2/3 \hat{i} + 1/3 \hat{j} + 2/3 \hat{k}
\]

เนื่องจาก \[
K = \left| \frac{dT}{ds} \right|
\]
\[
= \frac{2}{3}(2t^2+1)^2
\]

\[
t = 1, \quad K = \frac{2}{27}
\]

MA 434 165
ตัวอย่างที่ 3.9.4 \(\mathbf{R} = \frac{1}{3} t^3 \mathbf{j} + 2t \mathbf{j} + 2/t \mathbf{k}, \ t = 2 \) จงหา

\[\mathbf{R} \]

\[\mathbf{J}, \mathbf{N}, \mathbf{B}, \mathbf{K} \]

1. เส้นตัดกัน, เส้นแนวนครั้งแรก และ เส้นคู่แนวนครั้งแรก
2. ระยะทางแนวนครั้งแรก, ระยะทางแนวนครั้งที่สองเกี่ยวกับคู่แนวนครั้งแรก และระยะทางแนวนครั้งที่สอง

วิธีทำ

\[\frac{d\mathbf{R}}{dt} = \mathbf{v}_{1+2t^2} - 2t \mathbf{k} \]

\[\left| \frac{d\mathbf{R}}{dt} \right| = \sqrt{t^4 + 4 + 4t^2} \]

\[= t^2 + 2t - 2 \]

\[\mathbf{T} = \frac{t^2 + 2t - 2}{t^2 + 2t} \]

\[= \frac{t^4 + 2t - 2}{t^2 + 2t} \]

\[\mathbf{T}(2) = \frac{16t^2 + 8t - 2}{t^2 + 2t} \]

\[= 2(8t^2 + 4t - 1) \]

\[= \frac{8t^2 + 4t - 1}{18} \]

\[\mathbf{d} \]

\[\frac{d\mathbf{T}}{dt} = \frac{(t^4 + 2)(4t^3 + 4t^3) - (t^4 + 2t^2 - 2)(4t^3)}{(t^4 + 2)^2} \]

\[= \frac{(4t^7 + 8t^6 + 4t^5) + 4t^7 + 8t^6 + 8t^5 - 4t^7 - 8t^5 - 8t^3}{(t^4 + 2)^2} \]

\[= \frac{8t^3 + 8t^3 - 4t^5 + 8t^3}{(t^4 + 2)^2} \]

\[= \frac{4t(2t^2 + 2 - t^4)}{(t^4 + 2)^2} \]

\[\text{ตอบ} \]

166 MA 434
\[
\frac{dT}{ds} = \frac{dT}{dt} \left/ \left| \frac{dR}{dt} \right| \right. \\
= \frac{4t(2t^2 + (2-t^4) + 2t^2 - t^2k)}{(t^4+2)^2(t^2+2k)} \\
= \frac{4t^3(2t^3 + (2-t^4) + 2t^2 - t^2k)}{(t^4+2)^3} \\
\left| \frac{dR}{ds} \right| = \frac{4t^3}{(t^4+2)^3} \sqrt{4t^4 + (2-t^4) + 4t^4} \\
P = \frac{4t^3}{(t^4+2)^3} \sqrt{8t^4 - 4t^8 + t^8} \\
= \frac{4t^3}{(t^4+2)^3} \sqrt{8t^4 + 4t^4 + 4} \\
= \frac{4t^3}{(t^4+2)^3} (t^4+2) \\
= 4t^3 / (t^4+2)^2 \\
\hat{N} = \frac{2t^2 + (2-t^4) + 2t^2 - t^2k}{t^4+2} \\
\hat{N}(2) = \frac{8t^2 - 14t^4 + 8k}{18} \\
= \frac{4t^2 - 7t^4 + 4k}{9} \\
K = \frac{8}{81} \\
t = 2, \hat{B} = \hat{I} x \hat{N} = \begin{vmatrix} \hat{I} & \hat{J} & \hat{K} \\ 8/9 & 4/9 & -1/9 \\ 4/9 & -7/9 & 4/9 \end{vmatrix} \\
= \begin{vmatrix} \hat{I} & \hat{J} & \hat{K} \\ (1/81) & 8 & 4 \\ 4 & -7 & 4 \end{vmatrix} \\

MA 434
\[
\begin{align*}
\lambda & = \frac{1}{8} \left[\lambda (16-7) - \lambda (32+4) + \lambda (-56-16) \right] \\
& = \frac{1}{8} \lambda (93 - 36 \lambda - 72) \\
& = \frac{1}{9} \lambda (4 \lambda - 8) \\
\end{align*}
\]

๑. สมการเส้นสมมาตร ที่ \(t = 2 \) คือ

\[
\begin{align*}
\vec{r} &= \vec{r}(2) + \lambda \vec{n}(2) \\
& = \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \right) + \lambda \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \right) \\
& = \left(\frac{8}{3} + \frac{4}{9} \lambda \right) \vec{r} + \left(\frac{4}{9} \lambda \right) \vec{r} + \left(\frac{1}{9} - \lambda \right) \vec{r} \\
\end{align*}
\]

\[
\begin{align*}
\text{หรือ} \quad & \frac{x - 8/3}{8} = \frac{y - 4}{4} = \frac{z - 1}{-1} \\
\end{align*}
\]

๒. สมการเส้นแนวฉากที่ \(t = 2 \) คือ

\[
\begin{align*}
\vec{r} &= \vec{r}(2) + \lambda \vec{n}(2) \\
& = \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \right) + \lambda \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \frac{4}{9} \right) \\
& = \left(\frac{8}{3} + \frac{4}{9} \lambda \right) \vec{r} + \left(\frac{4}{9} \lambda \right) \vec{r} + \left(\frac{1}{9} + \lambda \right) \vec{r} \\
\end{align*}
\]

\[
\begin{align*}
\text{หรือ} \quad & \frac{x - 8/3}{8} = \frac{y - 4}{4} = \frac{z - 1}{-1} \\
\end{align*}
\]

๓. สมการเส้นคู่แนวฉากที่ \(t = 2 \) คือ

\[
\begin{align*}
\vec{r} &= \vec{r}(2) + \lambda \vec{n}(2) \\
& = \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \right) + \lambda \left(\frac{8}{3} \frac{4}{9} \frac{1}{9} \frac{8}{9} \right) \\
& = \left(\frac{8}{3} + \lambda \right) \vec{r} + \left(\frac{4}{9} - \frac{8}{9} \lambda \right) \vec{r} + \left(1 - \frac{8}{9} \lambda \right) \vec{r} \\
\end{align*}
\]
หรือ \[\frac{x - \frac{8}{3}}{1} = \frac{y - 4}{-4} = \frac{z - 1}{-8} \]

3. สมการเมื่อนำเอาที่ \(t = 2 \) ก็ยัง

\[
\begin{align*}
(\vec{r} - \vec{r}(2)) \cdot \vec{r}(2) &= 0 \\
\vec{r}(2) &= \frac{8\vec{i} + 4\vec{j} + \vec{k}}{3} \\
\vec{r}(2) &= \frac{8\vec{i} + 4\vec{j} - \vec{k}}{9} \\
(\vec{r} - (8\vec{i} + 4\vec{j} + \vec{k})) \cdot (8\vec{i} + 4\vec{j} - \vec{k}) &= 0 \\
8(x - 8) + 4(y - 4) - 1(z - 1) &= 0 \\
9x + 3y + 9z &= 72 \\
8x + 64 + 4y - 16 - z + 1 &= 0 \\
9x + 24y - 3z - 64 = 48 + 3 &= 0 \\
24x + 12y - 3z - 109 &= 0
\end{align*}
\]

ตอบ

4. สมการเมื่อนำเอาเส้นตรงกับต้นแนวจากที่ \(t = 2 \) ก็ยัง

\[
\begin{align*}
(\vec{r} - \vec{r}(2)) \cdot \vec{r}(2) &= 0 \\
(\vec{r} - (8\vec{i} + 4\vec{j} + \vec{k})) \cdot (4\vec{i} - 7\vec{j} + 4\vec{k}) &= 0 \\
4(x - 8) - 7(y - 4) + 4(z - 1) &= 0 \\
9x - 32 - 7y + 28 + 4z - 4 &= 0 \\
12x - 32 - 21y + 84 + 12z - 12 &= 0 \\
12x - 21y + 12z + 40 &= 0
\end{align*}
\]

ตอบ

5. สมการเมื่อนำเอาเส้นตรงที่ \(t = 2 \) ก็ยัง

\[
\begin{align*}
(\vec{r} - \vec{r}(2)) \cdot \vec{r}(2) &= 0 \\
(\vec{r} - (8\vec{i} + 4\vec{j} + \vec{k})) \cdot (\vec{i} - 4\vec{j} - 8\vec{k}) &= 0
\end{align*}
\]
\[
\frac{1}{9}(x-8) - \frac{4}{3}(y-4) - \frac{8}{9}(z-1) = 0
\]

\[
x-\frac{8}{3}y+16-8z+8 = 0
\]

\[
3x-8-12y+48-24z+24 = 0
\]

\[
3x-12y-24z+64 = 0
\]

\[\text{รวม}\]

ตัวอย่างที่ 3.9.5 จงพิสูจน์ว่า ถ้า \(\overrightarrow{R}(t) \) เป็นเส้นโค้งกระพือใน \(\mathbb{R}^3 \) แล้ว

\[\begin{align*}
\text{n.} & \quad \overrightarrow{B} = \frac{\overrightarrow{R}' \times \overrightarrow{R}''}{|\overrightarrow{R}' \times \overrightarrow{R}''|} \\
\text{p.} & \quad \overrightarrow{N} = \frac{(\overrightarrow{R}' \times \overrightarrow{R}'') \times \overrightarrow{R}'}{|(\overrightarrow{R}' \times \overrightarrow{R}'') \times \overrightarrow{R}'|}
\end{align*}\]

พิสูจน์ ถ้า ตามทฤษฎี 3.4 จะได้ว่า

\[\begin{align*}
\overrightarrow{T} & = \frac{\overrightarrow{R}'}{|\overrightarrow{R}'|} \\
\therefore \quad \overrightarrow{R}' & = \overrightarrow{T} |\overrightarrow{R}'| \\
& = \overrightarrow{T} s' \\
\overrightarrow{R}'' & = \overrightarrow{T} s'' + \overrightarrow{T} s's' \\
& = \overrightarrow{T} s'' + \overrightarrow{T} s's' \\
& = \overrightarrow{T} s'' + \overrightarrow{N}(s')^2 \quad \text{เนื่องจาก} \quad \overrightarrow{T} = \overrightarrow{N} \\
\overrightarrow{R}' \times \overrightarrow{R}'' & = s'' \overrightarrow{T} \times (s'' \overrightarrow{T} + \overrightarrow{N}(s')^2 \overrightarrow{N}) \\
& = s'' \overrightarrow{T} \times \overrightarrow{T} + \overrightarrow{N}(s')^2 (\overrightarrow{T} \times \overrightarrow{N}) \\
& = \overrightarrow{N}(s')^3 \overrightarrow{B}
\end{align*}\]

\[\begin{align*}
\text{ถ้า} \quad \overrightarrow{N} & \neq 0 \quad \text{จะได้ว่า} \\
\overrightarrow{B} & = \frac{\overrightarrow{R}' \times \overrightarrow{R}''}{\overrightarrow{N}(s')^3} \\
& = \frac{\overrightarrow{R}' \times \overrightarrow{R}''}{|\overrightarrow{R}' \times \overrightarrow{R}''|} \quad \therefore \quad \overrightarrow{N}(s')^3 = |\overrightarrow{R}' \times \overrightarrow{R}''|
\end{align*}\]
\[
\vec{N} = \vec{R} \times \vec{T} \\
= \frac{\vec{R}' \times \vec{R}''}{|\vec{R}' \times \vec{R}''|} \times \frac{\vec{R}'}{|\vec{R}'|}
\]

ข.

\[\vec{R} = a \cos t \vec{i} + a \sin t \vec{j}, \quad a > 0\]

ง.

\[\vec{T} = -\sin t \vec{i} + \cos t \vec{j}\]

และจากค่าของ \[\vec{R}\]

\[\kappa = \frac{1}{a}\]

และ

\[\frac{d\vec{T}}{ds} = \frac{-\cos t}{a} \vec{i} - \frac{\sin t}{a} \vec{j}\]

\[\vec{N} = \frac{d\vec{T}}{ds} \cdot \frac{|d\vec{T}|}{ds} \vec{i} - \frac{\cos t}{a} \vec{i} - \frac{\sin t}{a} \vec{j}\]

\[= (-1/a)\vec{R}\]

\[\vec{B} = \vec{T} \times \vec{N}\]

\[
\begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
-\sin t & \cos t & 0 \\
-\cos t & -\sin t & 0
\end{vmatrix}
= \vec{r}(0) - \vec{r}(0) + \kappa\left(\sin^2 t + \cos^2 t\right)
= \vec{r}
\]

หมายเหตุ

MA 434

171
แบบฝึกหัด 3.9

จากข้อ 3 มีข้อ 6 งงหาว่า วิ.มิ.ท.ของสั่นได้กี่ก้านนนค์ให้ ณ จุดก้านนนค์ให้

1. \(\mathbf{R} = \sin t \mathbf{i} + \cos t \mathbf{j} + 2t \mathbf{k}, \quad t = \frac{\pi}{2} \)

2. \(\mathbf{R} = 2t \mathbf{i} + t^2 \mathbf{j} + \frac{t^3}{3} \mathbf{k}, \quad t = 1 \)

3. \(\mathbf{R} = 3t \mathbf{i} + 3t^2 \mathbf{j} + 2t^3 \mathbf{k}, \quad t = 0, \quad t = 1 \)

4. \(\mathbf{R} = e^t \mathbf{i} + e^{-t} \mathbf{j} + \sqrt{2} t \mathbf{k}, \quad t = 0 \)

5. \(\mathbf{R} = 3t \cos t \mathbf{i} + 3t \sin t \mathbf{j} + 4t \mathbf{k}, \quad t = 0 \)

6. \(\mathbf{R} = e^t \sin t \mathbf{i} + e^t \cos t \mathbf{j} + e^t \mathbf{k}, \quad t = 0 \)
3.10 การบันทึกความผิด (Torsion)

ให้ \(\mathbf{T} = \mathbf{T}(s) \) แทนสัมประสิทธิ์ของ ขื่น ๓ ขื่น \(\mathbf{N}(s) \) อยู่ใน ขื่น \(C \)
หน่วยพันธ์ ของ \(\mathbf{B}(s) = \mathbf{B}(s) \times \mathbf{N}(s) \) จะได้ว่า

\[
\mathbf{B}(s) = \mathbf{T}(s) \times \mathbf{N}(s) + \mathbf{N}(s) \times \mathbf{T}(s) \\
= \mathbf{N}(s) \times \mathbf{N}(s) \times \mathbf{T}(s) + \mathbf{T}(s) \times \mathbf{N}(s) \\
= \mathbf{T}(s) \times \mathbf{N}(s) \quad \ldots \ldots \ldots (3.10.1)
\]

เนื่องจาก \(\mathbf{N} \) เป็นเวกเตอร์หน่วย \(\mathbf{N} \) ตั้งฉากกับ \(\mathbf{N} \) และ cena ตัว ระหว่างผันและสัมประสิทธิ์จะได้ว่า \(\mathbf{N} \) เป็น ผลรวมของสัมประสิทธิ์ของ \(\mathbf{T} \) และ \(\mathbf{B} \)

ให้ \(\mathbf{N}(s) = \mathbf{M}(s) \mathbf{T}(s) + \mathbf{T}(s) \mathbf{B}(s) \) โดยที่ \(\mathbf{M}(s) \) และ \(\mathbf{T}(s) \)
เป็นสัมประสิทธิ์

แทนค่า \(\mathbf{N}(s) \) ในสมการ (3.10.1) จะได้ว่า

\[
\mathbf{B}(s) = \mathbf{T}(s) \times \left[\mathbf{M}(s) \mathbf{T}(s) + \mathbf{T}(s) \mathbf{B}(s) \right] \\
= \mathbf{T}(s) \times \mathbf{M}(s) \mathbf{T}(s) + \mathbf{T}(s) \times \mathbf{T}(s) \mathbf{B}(s) \\
= \mathbf{T}(s) \times \mathbf{B}(s) \\
= -\mathbf{T}(s) \mathbf{N}(s) \quad \ldots \ldots \ldots (3.10.2)
\]

\(\mathbf{T}(s) \) ในสมการ (3.10.2) เรียกว่า second curvature หรือ ความผิดของ \(C \)

ที่จุด \(R(s) \)

เมื่อคูณสมการ (3.10.2) แบบกลับ ตัว \(\mathbf{N} \) จะได้
\[\mathbf{B}(s), \mathbf{N}(s) = \mathbf{\tau}(s) \mathbf{N}(s), \mathbf{N}(s) \]
\[= -\mathbf{\tau}(s) \]
\[\therefore \mathbf{\tau}(s) = -\mathbf{B}(s) \mathbf{N}(s) \ldots (3.10.3) \]

ตัวแปรหนึ่งของความมั่น แทนด้วย \(b \)

\[b = \frac{1}{b^2} \] เรียก \(b \) ว่ารัศมีของความมั่น (radius of torsion)

ตัวอย่างที่ 3.10.1

\[\mathbf{R} = a \cos t \mathbf{t} + a \sin t \mathbf{j} + b t \mathbf{k}, \quad a > 0, \ b \neq 0 \]

จากตัวอย่างที่ 3.9.1

\[\mathbf{B} = (a^2 + b^2)^{-1/2} \left(b \sin t \mathbf{t} - b \cos t \mathbf{j} + a \mathbf{k} \right) \]

\[\mathbf{E} = \frac{d\mathbf{B}}{ds} = \frac{d\mathbf{B}}{dt} / \left| \frac{d\mathbf{R}}{dt} \right| \]

\[\frac{d\mathbf{R}}{dt} = (a^2 + b^2)^{-1/2} \left(b \cos t \mathbf{t} + b \sin t \mathbf{j} \right) \]

จากตัวอย่างที่ 3.6.2

\[\left| \frac{d\mathbf{R}}{dt} \right| = (a^2 + b^2)^{1/2} \]

\[\mathbf{B} = (a^2 + b^2)^{-1} \left(b \cos t \mathbf{t} + b \sin t \mathbf{j} \right) \]

\[\mathbf{\tau} = -\mathbf{B} \mathbf{N} \]

\[= -\left[(a^2 + b^2)^{-1} \left(b \cos t \mathbf{t} + b \sin t \mathbf{j} \right) \right] \cdot \left(-\cos t \mathbf{t} - \sin t \mathbf{j} \right) \]

\[= -\left(a^2 + b^2 \right)^{-1} \left(-b \cos^2 t - b \sin^2 t \right) \]

\[= \frac{b}{a^2 + b^2} \]

หมายเหตุ

174 NA 434
ตัวอย่าง ค่า $b > 0$ (ค่ำหน้า $\gamma > 0$) อธิบายเป็น เส้นโคจริมชูวั (right-handed curve)

ตัวอย่าง 3.10.1

ค่า $b < 0$ (ค่ำหน้า $\gamma < 0$) อธิบายเป็น เส้นโคจริมซ้าย (left-handed curve)

ตัวอย่าง 3.10.2

รูป 3.10.1

รูป 3.10.2

ถ้าความมิตเท่ากับสูญแบนแบบเอกลักษณ์

นั่นคือ ถ้า $\gamma \equiv 0$ แล้ว

$$\frac{\text{d} \vec{B}}{\text{d}s} = -\gamma \vec{H} \equiv 0$$

$$\vec{B} = \vec{B}_0$$ โดยที่ \vec{B}_0 เป็นเวกเตอร์ที่มีขนาดคงตัว

พิจารณา

$$\frac{\text{d} \vec{B}_0}{\text{d}s} = \vec{H}_0 \vec{B}_0$$

$$= \vec{r} \cdot \vec{B}_0$$

MA 434 175
เนื่องจาก \(\mathbf{T} \) และ \(\mathbf{B}_0 \) ตั้งฉากกัน ค่านี้

\[
\frac{d}{ds} (\mathbf{R}, \mathbf{B}_0) = \mathbf{T}, \mathbf{B}_0 = 0
\]

อนันท์กาวจะได้

\[
\mathbf{R}, \mathbf{B}_0 = \text{ค่าคงตัว}
\]

นั่นคือ \(\mathbf{R} = \mathbf{R}(s) \) เป็นแอนไกเข้าในระบบ

และระบบตั้งแต่ล้าวมีสมการว่า

\[
\mathbf{R}, \mathbf{B}_0 = \text{ค่าคงตัว}
\]

ทฤษฎีบท 3.10.1 เลนน์เดิงใน ชั้น \(n \geq 3 \) ซึ่ง \(\mathbf{R} \) อยู่ใน ชั้น \(C^1 \) และอยู่ในระบบ

ก็จะมีสมการความปิดของมันเท่ากับศูนย์แบบเอกลักษณ์

\(\mathbf{I} \) (ความปิด) นอกจากจะทำได้จากสูตร (3.10.3) แล้วยังมีวิธีที่จะหาความปิดได้

สะดวกกว่า โดยใช้ทฤษฎีบทที่ 3.10.2

ทฤษฎีบท 3.10.2 จุดบนเส้นโค้ง \(\mathbf{R} = \mathbf{R}(t) \) ซึ่ง \(\kappa \neq 0 \) จะได้ว่า

\[
\mathbf{\kappa} = \frac{[\mathbf{R}' \mathbf{R}'' \mathbf{R}']}{|\mathbf{R}' \mathbf{R}''|^2}
\]

ตัวอย่างที่ 3.10.2

\(\mathbf{R} = (3t-t^3) \mathbf{R} + 3t^2 \mathbf{T} + (3t + t^3) \mathbf{B} \)

จงหาความปิด โดยใช้ทฤษฎีบทที่ 3.10.2

วิธีทำ

\[
\mathbf{\kappa} = \frac{[\mathbf{R}' \mathbf{R}'' \mathbf{R}']}{|\mathbf{R}' \mathbf{R}''|^2} = \frac{(\mathbf{R}' \cdot \mathbf{R}'') \mathbf{R}''}{|\mathbf{R}' \mathbf{R}''|^2}
\]
\[\vec{R}' = (3 - 3t^2) \hat{j} + 6t \hat{k} + (3 + 3t^2) \hat{R} \]
\[\vec{R}'' = -6t \hat{i} + 6 \hat{j} + 6t \hat{k} \]
\[\vec{R}''' = -6 \hat{i} + 6 \hat{k} \]
\[= 6(-\hat{i} + \hat{k}) \]

\[\vec{R}' \times \vec{R}'' = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 - 3t^2 & 6t & 3 + 3t^2 \\ -6t & 0 & 6t \end{vmatrix} \]
\[= \hat{t}(36t^2 - 18 - 18t^2) - \hat{j}(18t - 18t^3 + 18t^2 + 18t^3) + \hat{k}(18 - 18t^2 + 36t^2) \]
\[= (18t^3 - 18) \hat{t} - 36t \hat{j} + (18t^2 + 18) \hat{k} \]
\[= 18[(t^2 - 1) \hat{t} - 2t \hat{j} + (t^2 + 1) \hat{k}] \]

\[(\vec{R}' \times \vec{R}'') \cdot \vec{R}''' = 18[(t^2 - 1) \hat{t} - 2t \hat{j} + (t^2 + 1) \hat{k}] \cdot 6(-\hat{i} + \hat{k}) \]
\[= 108(-t^2 + 1 + t^2 + 1) \]
\[= 216 \]

\[\vec{R}' \times \vec{R}''' = 18^2(t^4 - 2t^2 + 1 + 4t^2 + 2t^2 + 1) \]
\[= 18^2(2t^4 + 6t^2 + 2) \]
\[= 18^2 \times 2(t^4 + 2t^2 + 1) \]
\[= 18^2 \times 2(t^2 + 1)^2 \]

\[T = \frac{216}{18^2 \times 2(t^2 + 1)^2} \]
\[= \frac{1}{3(t^2 + 1)^2} \]
\[\mathbf{R} = \frac{d}{ds} \frac{d}{d\mathbf{R}} (s) \]

\[
\begin{vmatrix}
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z} \\
\ldots & \ldots & \ldots
\end{vmatrix}
\]

\[\mathbf{T} = \frac{1}{(\dot{x})^2 + (\dot{y})^2 + (\dot{z})^2} \]

(3.10.4)

\[
\begin{aligned}
\dot{x} &= \frac{dx}{ds} , \\
\dot{y} &= \frac{dy}{ds} , \\
\dot{z} &= \frac{dz}{ds}
\end{aligned}
\]

\[
\begin{aligned}
\dddot{x} &= \frac{d^2x}{ds^2} , \\
\dddot{y} &= \frac{d^2y}{ds^2} , \\
\dddot{z} &= \frac{d^2z}{ds^2}
\end{aligned}
\]

\[
\begin{aligned}
\dddddot{x} &= \frac{d^3x}{ds^3} , \\
\dddddot{y} &= \frac{d^3y}{ds^3} , \\
\dddddot{z} &= \frac{d^3z}{ds^3}
\end{aligned}
\]

ถ้า \(\mathbf{R} = \mathbf{R}(t) \) แล้ว

\[
\begin{vmatrix}
x' & y' & z' \\
x'' & y'' & z'' \\
\ldots & \ldots & \ldots
\end{vmatrix}
\]

\[\mathbf{S} = \frac{1}{A^2 + B^2 + C^2} \]

(3.10.5)

โดยที่ \(A = \begin{vmatrix} y' & z' \\ y'' & z'' \end{vmatrix} \), \(B = \begin{vmatrix} z' & x' \\ z'' & x'' \end{vmatrix} \), \(C = \begin{vmatrix} x' & y' \\ x'' & y'' \end{vmatrix} \)

\[
\begin{aligned}
x' &= \frac{dx}{dt} , \\
y' &= \frac{dy}{dt} , \\
z' &= \frac{dz}{dt}
\end{aligned}
\]

\[
\begin{aligned}
x'' &= \frac{d^2x}{dt^2} \, , \\
y'' &= \frac{d^2y}{dt^2} \, , \\
z'' &= \frac{d^2z}{dt^2}
\end{aligned}
\]

\[
\begin{aligned}
x''' &= \frac{d^3x}{dt^3} \, , \\
y''' &= \frac{d^3y}{dt^3} \, , \\
z''' &= \frac{d^3z}{dt^3}
\end{aligned}
\]
ความยาว 3.10.8 จงหาความบริบทของอิลิคซ์ โดยใช้สูตร (3.10.5)

วิธีการ

สมการของ อิลิคซ์ คือ

\[\mathbf{R} = a \cos t \hat{i} + a \sin t \hat{j} + bt \hat{k} \]

\[x = a \cos t, \quad y = a \sin t, \quad z = bt \]

\[x' = -a \sin t, \quad y' = a \cos t, \quad z' = b \]

\[x'' = -a \cos t, \quad y'' = -a \sin t, \quad z'' = 0 \]

\[x''' = a \sin t, \quad y''' = -a \cos t, \quad z''' = 0 \]

\[A = \begin{vmatrix} a \cos t & b \\ -a \sin t & 0 \end{vmatrix} = ab \sin t \]

\[B = \begin{vmatrix} b & -a \sin t \\ 0 & -a \cos t \end{vmatrix} = -ab \cos t \]

\[C = \begin{vmatrix} -a \sin t & a \cos t \\ -a \cos t & -a \sin t \end{vmatrix} = a^2 \left(\sin^2 t + \cos^2 t \right) \]

\[= a^2 \]

\[\begin{vmatrix} x' & y' & z' \\ x'' & y'' & z'' \\ x''' & y''' & z''' \end{vmatrix} = \begin{vmatrix} -a \sin t & a \cos t & b \\ -a \cos t & a \sin t & 0 \\ a \sin t & -a \cos t & 0 \end{vmatrix} = a^2 b \]

\[\mathcal{T} = \frac{a^2 b}{a^2 + b^2} \]

\[= \frac{b}{a^2 + b^2} \]

ตอบ
แบบฝึกหัด 3.10

1. จงหา κ และ τ ของ $\mathbf{r} = a(3t-t^3)i + 3at^2j + a(3t+t^3)k$

2. จงหา τ ของ $\mathbf{r}' = (t-\sin t)i + (1-\cos t)j + tk$

3. ให้ $\mathbf{r}(t) = (t^2)i + tj + t^3k$ จงหา $\kappa, \sigma, \tau, \nu, R$

4. จงแสดงว่า κ และ τ ของเส้นโค้ง $\mathbf{r}' = e^t i + e^{-t}j + \sqrt{2}tk$ ถ้า

$$\kappa = -\tau = \sqrt{2}/(e^t + e^{-t})^2$$

และหาก κ และ τ ที่ $t = 0$

5. $\mathbf{r}' = \sin ti + \cos tj + 2tk$, $t = \pi/2$

6. $\mathbf{r}' = 3ti + 3t^2j + 2t^3k$, $t = 0$, $t = 1$

7. $\mathbf{r}' = 2ti + t^2j + t^3k$, $t = 1$

8. จงแสดงว่า ถ้า $\mathbf{r} = \mathbf{r}(s)$ เป็นเส้นโค้งใดๆ แล้ว

$$\mathbf{r}' = -\kappa^2t + \kappa_1 + \kappa_2$$

9. จงแสดงว่า ถ้า $\mathbf{r} = \mathbf{r}(s)$ เป็นเส้นโค้งใดๆ แล้ว

$$[\mathbf{r}' \mathbf{r}'' \mathbf{r}'''] = \kappa^2$$

10. จงพิสูจน์ทฤษฎีบท 3.10.2 : จุดบนเส้นโค้ง $\mathbf{r} = \mathbf{r}(t)$ ซึ่ง $\kappa \neq 0$ จะได้ว่า

$$\kappa = \frac{[\mathbf{r}' \mathbf{r}'' \mathbf{r}''']}{|\mathbf{r}' \times \mathbf{r}''|^2}$$

180
11. จงแสดงว่า $\kappa = |\ddot{r}|$

12. จงแสดงว่า $\vec{r} = \frac{\dot{r}}{t} + \frac{\ddot{r}}{t^2} + \frac{1}{t^2}$ ดังกล่าว

13. จงหา $\vec{r}, \vec{v}, \vec{a}$ ของวงกลมซึ่งมีเวคตอร์ \vec{a} และแทนด้วย

$$\vec{r}(s) = a \cos(s/a) + \sin(s/a)$$

14. นั่นสั่นได้ C แทนด้วย $\vec{R}(s)$ เมื่อ s เป็นความยาวโค้ง แล้วแสดงว่า

$$\kappa = [\dddot{R}(s), \dddot{R}(s)]^{1/2}$$

$$\tau = \frac{[\dddot{R}(s) \dddot{R}(s)]^{1/2}}{\dddot{R}(s) \cdot ?(s)}$$
3.11 สิกลิขุ (General or Cylindrical helix) คือเส้นโค้งใน 3 มิติ ซึ่งมีความชันคงตัว (constant slope) เวกเตอร์ตั้งตัวที่มุม ζ กับแนวแกนซึ่งเรียกว่า สิกลิขุ โดยที่มุม ζ เป็นมุมคงตัว แล้วเวกเตอร์ตั้งตัวนั้น เรียกว่า แกน (axis) ของ สิกลิขุ ยกเว้นในกรณีที่ $\zeta = 0$

ในกรณีที่ $\zeta = 0$ เวกเตอร์ตั้งตัวจะขนานกัน และเส้นโค้งในกรณีนี้ คือ เส้นตรง.

ตัวอย่างที่ 3.11.1 จงแสดงว่า สิกลิขุ มีค่าแทนแบบมาตรฐาน นั้น

$$z = x(s^*) + y(s^*) + s^* (\cos \alpha) \hat{z}$$

วิธีทำ ให้ สิกลิขุ เริ่มจากจุดกิจเนิด แล้ว z ขนานกับแกน z ของ สิกลิขุ แล้ว

$$\cos \alpha = \frac{\hat{z} \cdot \hat{k}}{\hat{k} \cdot \hat{k}} = \frac{\hat{z} \cdot \hat{k}}{\hat{k} \cdot \hat{k}} = \hat{z} \ldots \ldots \ (3.11.1)$$

เมื่อ α เป็นมุมระหว่าง \hat{z} และ \hat{k} อินพุตผล สมการ (3.11.1) จะได้

$$z = s \cos \alpha + c , \quad c \text{เป็นค่าคงตัว} \ldots \ldots \ (3.11.2)$$

ถ้า $\alpha \neq \pi/2$, $\cos \alpha \neq 0$

$$AZ - \cos \alpha = s + c$$

ให้ $$s^* = z / \cos \alpha = s + c / \cos \alpha$$

$$z = s^* \cos \alpha$$

182 MA 434
และจะได้ตัวแทนกระดาษต่อไปนี้ในรูป

\[
\vec{r} = x(s)\hat{i} + y(s)\hat{j} + z(s)\cos\alpha
\]

จากสมการ (3.11.2)
ถ้า \(\alpha = \pi/2, \quad \cos\alpha = 0 \)

\[z = c = 0 \]

เนื่องจากจุดกึ่งเหนือยุบแล้วได้

\[\vec{r} = x(s)\hat{i} + y(s)\hat{j} \]

ในการที่เส้นโค้งอยู่บนระนาบ XY

สัมผัสที่ 3.11.2 จงแสดงว่า \(|\vec{K}| \) ซึ่งเป็นความโค้งของโฟ לכןท์ขั้นของ

อิลิคซ์บนระนาบที่ตั้งฉากกับแกนของอิลิคซ์ โดยที่

\[|\vec{K}| = |\vec{K}| \sin^2 \alpha \]

เมื่อ \(\alpha \neq 0 \) เป็นมุมระหว่างแกนและเวกเตอร์สัมพันธ์กับ หิลิคซ์

และ \(|\vec{K}| \) เป็นความโค้งของอิลิคซ์

รูป 3.11.1

MA 434

183
ให้ $\mathbf{R} = \mathbf{R}(s)$ เป็นสันติ และ
กับ \mathbf{R} เป็นเวคเตอร์หน่วยบนแผนผังของสันติ ต่งรุป 3.1.1.
โดยจากขั้นตอนที่ตั้งจากกับ \mathbf{R} และด่านจุดที่นั้น
ถ้า เสนอเกณฑ์ที่สมการคือ

$$\mathbf{R}^* = \mathbf{R}(s) - (\mathbf{T}, \mathbf{R}(s) \mathbf{T}) \ldots \ldots (3.1.3)$$

ข้อกล่าวกล่าวโดยทั่วไป s จะไม่เป็น ตัวแปรเสริมธรรมชาติ สำหรับ ให้เข้าด้าน

$$(\mathbf{R}^* = \mathbf{R}^*(s))$$

ทุกมุมθ สมการ (3.1.3) จะได้

$$\frac{d\mathbf{R}^*}{ds} = \mathbf{R} - (\mathbf{T}, \mathbf{R}) \mathbf{T}$$

$$= \mathbf{T} - \cos \theta \mathbf{u}$$

$$\left| \frac{d\mathbf{R}^*}{ds} \right| = \left[\begin{array}{c} \frac{d\mathbf{R}^*}{ds} \\ \frac{d\mathbf{R}}{ds} \end{array} \right]^{1/2}$$

$$= \left[\begin{array}{c} \mathbf{T} \cdot \mathbf{T} - 2 \cos \theta (\mathbf{T}, \mathbf{u}) + \cos^2 \theta \right]^{1/2}$$

$$= \left[1 - 2 \cos^2 \theta + \cos^2 \theta \right]^{1/2}$$

$$= \left[1 - \cos^2 \theta \right]^{1/2}$$

$$= \sin \theta, \quad 0 < \theta \leq \pi$$

ดังนั้น $\mathbf{T}^* = \frac{d\mathbf{R}^*}{ds} / \left| \frac{d\mathbf{R}^*}{ds} \right|$

$$= \mathbf{T}^* - \cos \theta \mathbf{u}$$

$$= \frac{\mathbf{T}^*}{\sin \theta} - \cot \theta \mathbf{u}$$
\[
\frac{d\mathbf{T}^*}{ds} = \frac{\mathbf{T}}{\sin \alpha} \\
|\mathbf{K}| = |\mathbf{T}^*| \\
= \left| \frac{d\mathbf{T}^*}{ds} \right| \left/ \left| \frac{d\mathbf{K}}{ds} \right| \right| \\
= |\mathbf{T}| / \sin^2 \alpha \\
= |\mathbf{K}| / \sin^2 \alpha
\]
แบบฝึกหัด 3.11

1. จงแสดงว่าสั่นโค้งเป็นอิเล็กซ์ก็คือเมื่อ \(\gamma \neq 0 \) และ \(\gamma = 0 \) เมื่อ \(k = 0 \)

2. ให้ \(R = R(s) \) อยู่ใน ชั้น \(\geq 4 \) และให้

\[
\left[\frac{d^5 \gamma}{ds^5} \right] = k \frac{d^5}{ds^5} \left(\gamma / k \right)
\]

จงแสดงว่า \(R = R(s) \) เป็นอิเล็กซ์ก็คือเมื่อ

\[
\left[\frac{d^5 \gamma}{ds^5} \right] = 0
\]