บทที่ 2

เส้นของจุดในมิติ n มิติ

Point set in n dimensional space

สำหรับจุดสกัดในโลกที่มีมิติไม่จำกัดถึงจุดต่าง ๆ ใบ แต่สิ่งที่เราใช้ในการบรรยายจุดต่าง ๆ นั้น คือ จุดที่อยู่ในมิติ n มิติ หรือ n มิติ ได้แก่จุด (x₁, x₂, ..., xₙ) บน n มิติ

ในการศึกษาจุดในมิติ 3 มิติ หรือ 3 มิติ เราจะใช้ตัวอย่างจุดต่าง ๆ นั้น คือ จุด (x₁, x₂, x₃) บน 3 มิติ ประกอบการศึกษา เพราะว่าการเข้าใจจุดต่าง ๆ บน 3 มิติ ทำให้เราเข้าใจจุดต่าง ๆ บน n มิติได้ดี

2.1 ปัญหา n มิติ : \(\mathbb{R}^n \)

(n - dimension Space)

จุดในมิติ 2 มิติ คือตัวอย่างของจุดที่มีค่าอยู่ในนิยาม (x₁, x₂) เช่นเดียวกันกับจุดในมิติ 3 มิติ คือตัวอย่างของจุดที่มีค่าอยู่ในนิยาม (x₁, x₂, x₃) เช่นเดียวกับ n มิติ คือตัวอย่างของจุดที่มีค่าอยู่ในนิยาม (x₁, x₂, ..., xₙ)

สมมติ 2.1

สำหรับจุด n มิติ บน n มิติ เช่นจุด (x₁, x₂, ..., xₙ) เราสามารถสร้างจุดในมิติ n มิติ แทนด้วยพิกัดพิกัด x = (x₁, x₂, ..., xₙ)

จุดนี้เรียกว่าโดเมนหรือเซตที่ n มิติ สำหรับจุด x ที่มีค่าคือจุดที่มีค่าในมิติ n มิติ แทนด้วยพิกัดพิกัด x = (x₁, x₂, ..., xₙ) แทนด้วยพิกัดพิกัด R^n
1. $\mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) \mid x_i \in \mathbb{R}, \ i = 1, 2, \ldots, n\}$

2. ในเรื่องเวกเตอร์ \mathbb{R}^n (เรียกว่าเวกเตอร์ที่ n ตัวประกอบ (components)) และเรียก x ว่าตัวประกอบที่ n ของเวกเตอร์ x

ทฤษฎี 2.2 (การเท่ากัน)

ให้ $x = (x_1, x_2, \ldots, x_n)$ และ $y = (y_1, y_2, \ldots, y_n)$

เป็นสัมประสิทธิ์ของ \mathbb{R}^n และ $x = y$ เสมอและถ้าถึง $x_i = y_1, x_2 = y_2, \ldots, x_n = y_n$

ทฤษฎี 2.3 (การบวก)

ให้ $x = (x_1, x_2, \ldots, x_n)$ และ $y = (y_1, y_2, \ldots, y_n)$

เป็นสัมประสิทธิ์ของ \mathbb{R}^n ส่วนประกอบ x,y ที่กำหนดในรูป

$x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$

ทฤษฎี 2.4 (การคูณด้วยสเกลเลอร์)

ให้ $x = (x_1, x_2, \ldots, x_n)$ เป็นสัมประสิทธิ์ของ \mathbb{R}^n และ c เป็นสเกลเลอร์。

เรียก c เป็นสเกลเลอร์แล้ว

$cx = (cx_1, cx_2, \ldots, cx_n)$

ทฤษฎี 2.5

ให้ $x = (x_1, x_2, \ldots, x_n)$ และ $y = (y_1, y_2, \ldots, y_n)$ เป็นสัมประสิทธิ์ของ \mathbb{R}^n แล้ว $x - y = x + (-1)y$

$= (x_1 - y_1, x_2 - y_2, \ldots, x_n - y_n)$
ในการวิเคราะห์

ให้ \(x = (x_1, x_2, \ldots, x_n) \) และ \(y = (y_1, y_2, \ldots, y_n) \) เป็นสมาชิกของ \(\mathbb{R}^n \) แล้ว \(x \cdot y = x_1y_1 + x_2y_2 + \ldots + x_ny_n \)

\[= \sum_{k=1}^{n} x_ky_k \]

ในการวิเคราะห์

ให้ \(x = (x_1, x_2, \ldots, x_n) \) เป็นสมาชิกของ \(\mathbb{R}^n \) แล้วขนาด (norm) ของ \(x \) แทนด้วย \(\| x \| \) คือ

\[\| x \| = (x \cdot x)^{\frac{1}{2}} \]

\[= (\sum_{k=1}^{n} x_k^2)^{\frac{1}{2}} \]

หมายเหตุ

1. \(\| x \cdot y \| \) แทนระยะทางระหว่าง \(x \) กับ \(y \)

2. \(0 \in \mathbb{R}^n \) แทนตัว \((0, 0, \ldots, 0) \) หรือ \(x \in \mathbb{R}^n, x = 0 \)

เพื่อแสดงถึงการที่ \(x_i = 0 \) สำหรับทุก ๆ \(i = 1, 2, \ldots, n \)

ทฤษฎี 2.1

ทฤษฎี \(x, y \) เป็นสมาชิกใน \(\mathbb{R}^n \) แล้ว

1. \(\| x \| > 0 \)

2. \(\| x \| = 0 \) เพื่อแสดงถึงการที่ \(x = 0 \)

3. \(\| cx \| = |c| \| x \| \)

4. \(|x \cdot y| \leq \| x \| \| y \| \)

5. \(\| x + y \| \leq \| x \| + \| y \| \)
(1) จากนี้ถาม \(\| x \| = \left(\sum_{k=1}^{n} x_k^2 \right)^{\frac{1}{2}} \)

และ \(x_k^2 > 0 \) สำหรับทุก ๆ \(x_i \)

(2) ถ้า \(x \neq 0 \) ดังนั้นจะเป็น \(x_k \neq 0 \) สำหรับ \(k \) บางตัว

เพื่อว่า \(\| x \|^2 = x_1^2 + x_2^2 + \ldots + t x_k^2 + \ldots + x_n^2 \)

\(> x_k^2 > 0 \)

จะได้ว่า \(x \neq 0 \)

แต่ถ้า \(x = 0 \)

\(\text{บันศักย์สุนิ่ง} \) ได้ว่า ถ้า \(\| x \| = 0 \) แล้ว \(x = 0 \) ที่ (*)

ถ้า \(x = 0 \) ดังนั้น \(x = (0, 0, \ldots, 0) \)

\[x = \sqrt{0^2 + 0^2 + \ldots + 0^2} \]

\[= 0 \]

\(\text{บันศักย์สุนิ่ง} \) ได้ว่า ถ้า \(x = 0 \) แล้ว \(\| x \| = 0 \) (**)

จาก (*) และ (**) จะได้ว่า

\(\| x \| = 0 \) เมื่อและเท่านั้น เมื่อ \(x = 0 \)

(3) \[\| cx \|^2 = (cx_1)^2 + (cx_2)^2 + \ldots + (cx_n)^2 \]

\[= c^2 (x_1^2 + x_2^2 + \ldots + x_n^2) \]

\[= c^2 \| x \|^2 \]

\[\| cx \| = |c| \| x \| \]
(4) ตัวการณ์อื่นๆ

\[|x \cdot y| < \|x\| \|y\| \]

\[\begin{align*}
\text{ให้ } x_1y_1 + x_2y_2 + \ldots + x_ny_n & \leq \\
& \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2} \\
\text{ให้ } a & = x_1^2 + x_2^2 + \ldots + x_n^2, \\
b & = x_1y_1 + x_2y_2 + \ldots + x_ny_n, \\
c & = y_1^2 + y_2^2 + \ldots + y_n^2 \\
\text{เพราะฉะนั้น } ax^2 + 2bx + c & = (x_1x + 2x_1y_1x + y_1^2) + \\
& (x_2x + 2x_2y_2x + y_2^2) + \ldots + (x_nx + 2x_ny_nx + y_n^2) \\
= (x_1x + y_1)^2 + (x_2x + y_2)^2 + \ldots + (x_nx + y_n)^2 \geq 0 \\
\text{เพราะฉะนั้น } (2b)^2 - 4ac & \leq 0 \\
4b^2 - 4ac & \leq 0 \\
b^2 - ac & \leq 0 \\
b^2 & \leq ac \\
b & \leq \sqrt{ac} = \sqrt{a} \sqrt{c} \\
\text{เพราะฉะนั้น } x_1y_1 + x_2y_2 + \ldots + x_ny_n & \leq \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \\
& \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2} \\
\text{สันนิฐาน } |x \cdot y| < \|x\| \|y\| \]
\begin{align*}
(5) \quad \| x + y \|^2 &= \| (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \|^2 \\
&= (x_1 + y_1)^2 + (x_2 + y_2)^2 + \ldots + (x_n + y_n)^2 \\
&= x_1^2 + 2x_1y_1 + y_1^2 + x_2^2 + 2x_2y_2 + y_2^2 + \ldots + x_n^2 + 2x_ny_n + y_n^2 \\
&= (x_1 + x_2 + \ldots + x_n^2) + 2 (x_1y_1 + x_2y_2 + \ldots + x_ny_n) + (y_1^2 + y_2^2 + \ldots + y_n^2) \\
&= \| x \|^2 + 2x.y + \| y \|^2 \\
&\leq \| x \|^2 + 2 \| x \| \| y \| + \| y \|^2 \\
&= (\| x \| + \| y \|)^2 \\
\text{แสดงว่า} \\
\| x + y \| \leq \| x \| + \| y \| .
\end{align*}

ผลลัพธ์ตาม (4) เรียกว่า \textit{Cauchy - Schwarz inequality}

ถัดไปผลลัพธ์ตาม (5) เรียกว่า \textit{Triangle inequality}

\textbf{ข้อสังเกตุ} ถ้าถ้า \textit{Triangle inequality} ไปยังย่อมเราจะไปในรูปแบบอื่นๆ สั้นๆ คือ

\begin{align*}
\| x - z \| &< \| x - y \| + \| y - z \| \\
\text{ซึ่งถ้า} \quad \| x - z \| &= \| (x - y) + (y - z) \| \\
&\leq \| x - y \| + \| y - z \|
\end{align*}

ผลก็คือเรายังคงสืบค้านไปได้ต่อไปได้ว่า \(\| x \| - \| y \| \leq \| x - y \| \) โดยอาศัย \textit{Triangle inequality}

\textbf{ข้อยุติ} \textit{Triangle inequality}
2.2 เขตเปิดใน \mathbb{R}^n (open set in \mathbb{R}^n)

ในทฤษฎี 2.2 สภาพ x, y ใน \mathbb{R}^n

$$|x| - |y| \leq |x - y|$$

ทฤษฎี 2.2 เฉพาะว่า $|x| = |(x - y) + y|$$

$$\leq |x - y| + |y|$$

จะได้ว่า $|x| - |y| \leq |x - y|$ (*)&

ในทฤษฎี 2.2 เฉพาะว่า $|y| - |x| \leq |y - x| = |x - y|$ (**) ที่นี่ $|x - y| \leq |x| - |y|$ (**) จะได้ว่า

$$|x| = |y| \leq |x - y|$$

2.2 เขตเปิดใน \mathbb{R}^n (open set in \mathbb{R}^n)

(2.8) ใน \mathbb{R}^n และ r เป็นจำนวนจริงบวก แล้ว $\{x \mid x \in \mathbb{R}^n$ และ $|x - a| < r\}$ เรียกว่าบริเวณ a (neighborhood of a)

นิยาม 2.6 $N(a; r)$ หรือ $N_r(a)$

เขต $N(a; r)$ เขตเปิดที่ประกอบด้วยจุด a และส่วนที่อยู่ภายใน \mathbb{R}^n ทุกจุดทางช่วง r สัมผัสกับจุด a ใน \mathbb{R}^n หรือ \mathbb{R}^2 หรือ \mathbb{R}^3 หรือ \mathbb{R}^n ในส่วนที่อยู่ภายใน \mathbb{R}^n combinable

และใน \mathbb{R}^n ที่ส่วนที่อยู่ภายใน \mathbb{R}^n combinable
ตัวอย่าง 2.1 ฉะนั้นมุมของ \(N((1,2);3) \)

วิธีทำ เพราะว่า \(N((1,2);3) \) เป็นบริเวณ (neighborhood) ของจุด \((1,2)\) ใน \(\mathbb{R}^2 \)

\[N((1,2);3) \]

วิธี 2.1

\[N((1,2);3) \]

\[x \in N((1,2);3) \] แล้ว \(\| x - (1,2) \| < 3 \)

ทฤษฎี 2.9 ให้ \(S \subseteq \mathbb{R}^n \) และ \(a \in S \) แล้ว \(a \) จะเป็นวัฎจักรกิจภายใน (interior point) ของ \(S \) เมื่อและเท่านั้นเมื่อส่วนของ \(a \) ซึ่ง \(N(a;\varepsilon) \subseteq S \)

สำหรับเซต \(S \) ใด ๆ ซึ่ง \(S \subseteq \mathbb{R}^n \) เซตของจุดที่มากที่สุดเป็นจุดภายใน (interior point) ของเซต \(S \) แทนด้วยสัญลักษณ์ \(\text{Int} \, S \).
ทฤษฎี 2.10 ให้ \(S \subseteq \mathbb{R}^n \) และ \(a \in \mathbb{R}^n \) แล้ว \(a \) จุดใน\(S \) จะเรียกว่าเป็นขีดค้นทศตก (exterior point) \(S \) ใน \(\mathbb{R}^n \) เทียบกับ \(S \cap \mathbb{R}^n(a; r) = \emptyset \) สำหรับเพื่อ \(r \) ใด ๆ \(r \geq 0 \) ถ้า \(S \subseteq \mathbb{R}^n \) เทียบกับจุดทศตกที่เป็นจุดที่มีขนาดเล็กที่สุด (exterior point) ของ \(S \) แทนว่าในสัญลักษณ์ Ext.S

ทฤษฎี 2.11 ให้ \(S \subseteq \mathbb{R}^n \) และให้ \(a \in \mathbb{R}^n \) ซึ่ง \(a \) ไม่เป็นจุดที่มีขนาดเล็กที่สุด (exterior point) และจุดที่อยู่ใน (interior point) แต่ไม่เป็นจุดการเข้า (boundary point) ของ \(S \) เข้าของจุดที่มีขนาดเล็กที่เป็นจุดการเข้า (boundary point) ของ \(S \) แทนว่าในสัญลักษณ์ Ed.S

สัมยงค์ 2.2 กำหนดให้ \(S_1 = \{(x_1, x_2) \mid 0 \leq x_1 < 1 \text{ และ } 0 < x_2 \leq 1\} \)

\[S_2 = \{(x_1, x_2) \mid x_1 > 0, x_2 > 0 \text{ และ } x_1^2 + x_2^2 < 1\} \]

จงเขียนรูปของ \(S_1, S_2 \) พร้อมทั้งผลก่อตัวตามจุดที่มีขนาดเล็กและจุดการเข้าของ \(S \)

วิธีการ \(S_1 = \{(x_1, x_2) \mid 0 \leq x_1 < 1 \text{ และ } 0 < x_2 \leq 1\} \)

\[
\begin{align*}
(0,1) & \\
(1,1) & \\
(1,0) & \\
\end{align*}
\]

รูป 2.2
ดุลยพินิจของ S_1 คือดูกับในรูปที่เกี่ยวข้องไม่รวมกัน

ส่วน $\text{Int.}_S = \{(x_1, x_2) \mid 0 < x_1 < 1, \ 0 < x_2 < 1\}$

ดุลยพินิจของ S_1 คือดูดดานนอกของที่เดิมไม่รวมกัน

ส่วน $\text{Ext.}_S = \{ (x_1, x_2) \mid 0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1\}$

สำหรับดูดดานของ S_1 คือดูดดานด้านนอกที่เดิมสัมผัส

\[S_2 = \{(x_1, x_2) \mid x_1 > 0, \ x_2 > 0 \ \text{และ} \ x_1^2 + x_2^2 < 1\} \]
บทนิยาม 2.12 ให้ \(S \subseteq \mathbb{R}^n \) แต่เรียก \(S \) ว่าเขตเปิด (open set) เมื่อสั่งให้\\
ต่อมา \(\text{Int}(S) = S \) หรือหมายความว่าทุก ๆ สมาชิกใน \(S \) เป็นจุด\\
ข้างในของ \(S \)

ตัวอย่างในการกิ่งสูงขึ้นว่า \(S \) เป็นเขตเปิดเพียงพอที่สูงสุดขึ้นว่า ทุก ๆ สมาชิก \(x \) ใน\\
\(S \) จะมีจุด 무슨ข้างบน \(r \) ซึ่ง \(B(x; r) \subseteq S \)

บททฤษฎี 2.3 กำหนดให้ \(a \in \mathbb{R}^n \) และ \(r \) เป็นจำนวนจริงบวก แล้ว \(B(a; r) \)\\
เป็นเขตเปิด\\

กรณี\\

ให้ \(x \) เป็นสมาชิกใด ๆ ของ \(B(a; r) \)

ให้ \(r' = r - \|x - a\| \) ดังนั้น \(r' > 0 \)

บททฤษฎี 2.5

ต่อจากรูปที่ 2.5 ว่า \(B(x; r') \subseteq B(a; r) \)

ให้ \(y \in B(x; r') \)

ดังนั้น \(\|y - x\| < r' \)

จะได้ว่า \(\|y - x\| < r - \|x - a\| \)

\(\|y - x\| + \|x - a\| < r \)
58

\[\| y - a \| \leq \| y - x \| + \| x - a \| \]

เพราะฉนั้น \(\| y - a \| < r \)

เนื่องจาก \(y \in N(a; r) \)

แสดงว่า \(N(x; r') \subseteq N(a; r) \)

เพราะฉนั้น \(x \) เป็นจุดอย่างน้อย \(N(a; r) \)

ดังนั้น \(N(a; r) \) เป็นเซตเปิด

เพิ่มเติม 2.3 ใน \(\mathbb{R} \) เซตเปิดคือ \((a, b)\) ใด ๆ นอกจากนั้นผลลัพธ์เป็นผลลัพธ์ที่

(สมมติ) ของ 2 หรือมากกว่า 2 เซตใด ๆ เป็นเซตเปิดด้วย

แต่สำหรับ \([a, b]\) ไม่เป็นเซตเปิดเพราะว่า ๆ ๆ \(a, b \) เป็นจุดใน \([a, b]\)

แต่ \(a, b \) ไม่เป็นจุดอย่างน้อย \([a, b]\)

ตัวอย่างของเซตเปิดใน \(\mathbb{R}^2 \) ที่ขั้นตอนเจาะจงที่เหมือนกันไม่ว่าก็ตาม

รวมถึงปรากฏที่จะแตกต่างกันก็เป็นอย่าง 2 ช่วงเปิดใด ๆ ที่ต่อ 2.6

\[(a, b) \times (c, d) \]

รูป 2.6

จากตัวอย่าง 2.2 \(S_1, S_2 \) ไม่เป็นเซตเปิด
กลุ่ม 2.4 ว่า \(\emptyset \) และ \(\mathbb{R}^n \) เป็นเซตเปิด

(1) \(\emptyset \) เป็นเซตเปิด

หมายความว่า \(\emptyset \) ไม่เป็นเซตเปิด เพราะถ้ามี \(x \in \emptyset \) ที่ \(x \) ไม่เป็นจุดต่ำในของ \(\emptyset \)

เพื่อออกจากที่ว่ามี \(x \in \emptyset \)

ดังนั้น \(\emptyset \) เป็นเซตเปิด

(2) \(\mathbb{R}^n \) เป็นเซตเปิด

ให้ \(x \in \mathbb{R}^n \)

จงให้ \(N(x; \varepsilon) \subseteq \mathbb{R}^n \) สำหรับทุก \(\varepsilon > 0 \) ใน \(\varepsilon \) เพราะว่า \(\mathbb{R}^n \)

เป็นเอกภาพทุก ๆ เซตเป็นสับเซตของ \(\mathbb{R}^n \)

เพราะฉะนั้น \(\mathbb{R}^n \) เป็นเซตเปิด

ส่วนการรวมคู่ต่อไปนี้จะส่งผลต่อการรวมของเซตเปิด ผลของการ (union) และผลของข้อ (intersection)

กลุ่ม 2.5 กำหนดให้ \(E \subseteq \mathbb{R}^n \) และ \(F \subseteq \mathbb{R}^n \) เป็นเซตเปิดใน \(\mathbb{R}^n \) แล้ว

\(E \cup F \) เป็นเซตเปิด

กลุ่ม 2.5 กำหนดให้ \(E \) และ \(F \) เป็นเซตเปิด

ต้องการแสดงว่า \(E \cap F \) เป็นเซตเปิด

\[x \in E \cap F \]

\[x \in E \]

\[x \in F \]

\[\text{รูป 2.7} \]
เพราะฉะนั้น \(x \in E \) และ \(x \in F \)

เพราะฉะนั้น \(E \) และ \(F \) เป็นเซตเปิด

สังเกตุว่า \(r_1 > 0 \) ซึ่ง \(N(x; r_1) \subseteq E \) และมี \(r_2 > 0 \) ซึ่ง \(N(x; r_2) \subseteq F \)

เลือก \(r \) เป็นค่าหนึ่งที่อยู่ระหว่าง \(r_1 \) ที่ \(r_2 \)

ต้องการพิสูจน์ว่า \(N(x; r) \subseteq E \cap F \)

ให้ \(y \in N(x; r) \)

สังเกต \(\|y - x\| < r \leq r_1 \)

\(y \in N(x; r_1) \subseteq E \)

และ\(y \in N(x; r_2) \subseteq F \)

เพราะฉะนั้น \(y \in E \cap F \)

ดังนั้นทุก ๆ สมาชิก \(x \) ใน \(E \cap F \) จะมี \(r > 0 \) ซึ่ง \(N(x; r) \subseteq E \cap F \)

สังเกต \(E \cap F \) เป็นเซตเปิด

โดยใช้การสุ่มไม่เป็นเซตเปิด (Mathematical Induction)

จะพิสูจน์ได้ว่า \(E_1 \cap E_2 \cap \ldots \cap E_n = \bigcap_{i=1}^{n} E_i \) เป็นเซตเปิด เมื่อถานว่าให้ \(E_i \)

เป็นเซตเปิดสำหรับทุก ๆ \(i = 1, 2, 3, \ldots, n \)

ทฤษฎี 2.6 ให้ \(E_v \) เป็นเซตเปิดสำหรับแต่ละ \(v \in I \) แล้ว

\[\bigcup_{v \in I} E_v \] เป็นเซตเปิด

ทฤษฎี ให้ \(E_v \) เป็นเซตเปิด

ต้องการพิสูจน์ว่า \(\bigcup_{v \in I} E_v \) เป็นเซตเปิด
นิยมที่ $x \in \bigcup_{v \in I} E_v$

ดังนั้น $x \in E_v$ สำหรับ $v \in I$

เพราะที่ E_v เป็นเซตเปิด

ดังนั้น ถ้า $r > 0$ ซึ่ง $x \in N(x; r) \subseteq E_v$

จะได้ $x \in N(x; r) \subseteq E_v \subseteq \bigcup_{v \in I} E_v$

เพราะฉะนั้น $\bigcup_{v \in I} E_v$ เป็นเซตเปิด

ย่อสังเกต

จากทฤษฎีบท 2.5 และ 2.6 จะได้ยังสังเกตว่าส่วนเขต (union) และส่วนนิยม (intersection) ของเซตเปิดที่มีจำนวนจุดจะเป็นเซตเปิด

ใดๆถ้าเป็นเซตเปิดแต่ส่วนนิยมส่วนเขตที่เป็นเซตเปิด แต่ส่วนนิยมส่วนเขตที่ไม่เป็นเซตเปิดไม่สามารถเป็นเซตเปิด

ใน \mathbb{R} ให้ $E_n = (1 - \frac{1}{n}, \frac{1}{n})$ เป็นเซตเปิด แต่

$\bigcap_{n=1}^{\infty} E_n = \emptyset$ ไม่เป็นเซตเปิด

ใน \mathbb{R}^2 ให้ $E_n = N((0,0); \frac{1}{n})$ เป็นส่วนเขต (neighborhood) ของจุด $(0,0)$ ที่ $\frac{1}{n}$ เป็นเซตเปิด แต่

$\bigcap_{n=1}^{\infty} E_n = \bigcap_{n=1}^{\infty} N((0,0); \frac{1}{n}) = \{(0,0)\}$ ซึ่งไม่เป็นเซตเปิด
2.3 เซตปิด

(.Closed set)

ทฤษฎี 2.13 ให้ $S \subseteq \mathbb{R}^n$ แล้วเรียก S ว่าเซตปิด (closed set) เมื่อและเท่านั้น S' หรือ $\mathbb{R}^n - S$ เป็นเซตเปิด

ทฤษฎี 2.4 ใน \mathbb{R} ช่วง $[a, b]$ เป็นเซตปิดเพราะว่าสมบัติมีลักษณะ ∞=(-∞, a) U (b, ∞) ซึ่งเป็น겹ของเซตเปิด 2 เซตซึ่งเป็นเซตเปิด

ใน $\mathbb{R}^2, S = \{x \mid x \in \mathbb{R}^2$ และ $\|x\| < 1\}$ เป็นเซตปิด เพราะว่า

![Diagram](image)

S' เป็นเซตเปิด

ทฤษฎี 2.7 \emptyset และ \mathbb{R}^n เป็นเซตปิด

เพราะว่า \mathbb{R}^n เป็นเซตเปิดและตรงข้ามมีตัวอย่าง \mathbb{R}^n, ดังนั้น $\mathbb{R}^n - \mathbb{R}^n = \emptyset$

ดังนั้น \emptyset เป็นเซตปิด

และเพราะว่า \emptyset เป็นเซตเปิดและตรงข้ามมีตัวอย่าง \emptyset ดังนั้น

...
\[R^n - \phi = R^n \]

ตั้งนี้ \(R^n \) เป็นเซตต์

ส่วนทฤษฎีบท 2.8, 2.9 เช่นเดียวกันเป็นผลิตเพื่อนมากจาก ทฤษฎีบท 2.5 และ 2.6 กล่าวถึงการสั่งเกี่ยวกับการที่จะกำหนดให้

ทฤษฎีบท 2.8 ให้ \(E, F \) เป็นเซตต์ใน \(R^n \) และ \(E \cup F \) เป็นเซตต์

เพื่อให้ \((E \cup F)' = E' \cap F' \)

แต่ \(E', F' \) เป็นเซตต์ เพราะว่า \(E, F \) เป็นเซตต์

จากทฤษฎีบท 2.5 ได้ \(E' \cap F' \) เป็นเซตต์

ดังนั้น \((E \cup F)' \) เป็นเซตต์

เพราะฉนั้น \(E \cup F \) เป็นเซตต์

โดยวิธีการจุดนั้นเป็นเทคนิคค่าผลต์ (mathematical induction)

จะกำหนดให้ \(E_1 \cup E_2 \cup \ldots \cup E_n = \bigcup_{i=1}^{n} E_i \) เป็นเซตต์ เพื่อกำหนดให้ \(E_i \) เป็นเซตต์สำหรับทุก ๆ ค่า \(i = 1, 2, \ldots, n \)

ทฤษฎีบท 2.9 ให้ \(E_v \) เป็นเซตต์สำหรับทุก ๆ \(v \) และ \(\bigcap_{v \in I} E_v \) เป็นเซตต์

เพื่อให้ \((\bigcap_{v \in I} E_v)' = \bigcup_{v \in I} E_v' \)

แต่ \(E_v' \) เป็นเซตต์ เพราะว่า \(E_v \) เป็นเซตต์

จากทฤษฎีบท 2.6 \(\bigcup_{v \in I} E_v' \) เป็นเซตต์

ดังนั้น \((\bigcap_{v \in I} E_v)' \) เป็นเซตต์

เพราะฉนั้น \(\bigcap_{v \in I} E_v \) เป็นเซตต์
ตัวอย่างที่ 2.10 ถ้า E เป็นเซตเปิดและ F เป็นเซตเปิดแล้วจะได้ว่า

(1) $E - F$ เป็นเซตเปิด

(2) $F - E$ เป็นเซตเปิด

(1) เพราะว่า $E - F = E \cap F'$

E เป็นเซตเปิดและ F' เป็นเซตเปิด

สังเกต $E - F$ เป็นเซตเปิด

(2) เพราะว่า $F - E = F \cap E'$

F เป็นเซตเปิดและ E' เป็นเซตเปิด

สังเกต $F - E$ เป็นเซตเปิด

12.4 จุดเกิดขึ้น (Accumulation point, Limit point)

ในการศึกษาเรื่องนี้ ผลที่เกิดขึ้นเป็นตัวอย่างคอมพลีเม้นต์ของเซตเปิดแล้วปัจจัยสำคัญ

จุดเกิด (limit point) ในการศึกษาเรื่องนี้ ได้ถูกวิจัย

ที่มา 2.14 กำหนดให้ $a \in \mathbb{R}^n$ เป็นจุดจำนวนใดๆ และ

$N^*(a ; r) = N(a ; r) - \{a\}$ เรียกว่าเป็นกลุ่มเกิดจุด a

(delated neighborhood of a)

ที่มา 2.15 ให้ $S \subseteq \mathbb{R}^n$ และ $a \in \mathbb{R}^n$ กำหนดจุดเกิด (limit point)

ของ S เมื่อสิ่งข้อใดข้อหนึ่ง สำหรับทุกๆ $r > 0$, $N^*(a ; r) \cap S \neq \emptyset$
ตัวอย่าง 2.5 (1) \(S_1 = \{ \frac{1}{n} \mid n \in \mathbb{N} \} \) เป็นจุดคงที่ของ \(S_1 \)

(2) \(S_2 = \{ x \mid a < x < b \} \) เป็นจุดคงที่ \((a, b)\) และทุก ๆ จุดใน \([a, b]\) เป็นจุดคงที่ของ \(S_2 \)

(3) \(S_3 = \{(x_1, x_2) \mid 0 < x_1, 0 < x_2, x_1 + x_2 < 1\} \)

ตัวอย่างต่อไปนี้เป็นจุดคงที่ของ \(S_3 \) เช่น \((0, 1)\) ตัวอย่าง

![Graph](image)

ป. 2.9

บทบาท ผลกระทบจะไปต่อกำลังจุด (limit point) แล้วทำให้เกิดการอ้างถึงจุดขั้น (accumulation point) ของจุดคงที่

ทฤษฎี 2.11

ถ้า \(S \subseteq \mathbb{R}^n \) และ \(x \) เป็นจุดคงที่ของ \(S \) แล้ว ๆ ๆ บ้าน \(N(x; \epsilon) \) ประกอบด้วยจุดใน \(S \)

ข้อสัญญา

(1) \(x \) เป็นจุดคงที่ของ \(N(x; \epsilon) \)

(2) ใช้ \(x' \) เป็นจุดที่ตัดต่อของ \(x \) ที่ \(N(x; \epsilon) \)

(3) \(|x - a_1|, |x - a_2|, \ldots, |x - a_n| \)

สังเกตว่าเซต \(S \) ใน \(N(x; \frac{\epsilon}{2}) \)

สังเกตว่า \(N(x; \frac{\epsilon}{2}) \subseteq S = \emptyset \)
เพื่อจุดนี้ x ไม่เป็นจุดติดสิ่งของ S

เกิดความอันเบิกกัน

เพื่อจุดนี้ $N(x, \epsilon)$ ประกอบด้วยจุดเป็นจำนวนอนันต์

ที่กล่าวมาแล้วข้างต้น เราคิดว่าผลิตโดยการลบความเสี่ยงต้องมีอยู่ใน S สำหรับทุก ๆ $x $ใน S เป็นการคลุมบีเดวิคโดยใช้ดั้ว

\begin{proof}
\end{proof}

ส่วนที่ 2.1.21 ถ้ามีให้ $S \subseteq \mathbb{R}^n$

S เป็นเซตเกี๊ยว แล้วและเกี๊ยวทุก ๆ $x \in \mathbb{R}^n$ ถ้า x เป็นจุดติดสิ่งของ S แล้ว $x \in S$

\begin{enumerate}
\item สัมผัส S เป็นเซตเกี๊ยว

\[
\text{ให้ } x \text{ เป็นจุดติดสิ่งของ } S \text{ ดังการสั่งสู่ต้นว่า } x \in S
\]

\[
\text{สัมผัส } x \notin S
\]

\[
\text{สั่งลง } x \in \mathbb{R}^n - S
\]

\[
\text{เพราะว่า } S \text{ เป็นเซตเกี๊ยวส่วนนี้ } \mathbb{R}^n - S \text{ เป็นเซตเกี๊ยว}
\]

\[
\text{สั่งลงแล้ว } N(x, \epsilon) \text{ ซึ่ง } N(x, \epsilon) \subseteq \mathbb{R}^n - S
\]

\[
N(x, \epsilon) \cap S = \emptyset
\]

\[
\text{เพราะฉะนั้น } N^*(x, \epsilon) \cap S = \emptyset
\]

\[
\text{สิ้นสุด } x \text{ ไม่เป็นจุดติดสิ่งของ } S
\]

\[
\text{เกิดความอันเบิกกัน}
\]

\[
\text{เพราะฉะนั้น } x \in S
\]

\item สัมผัสที่ $x \in S$ เป็นจุดติดสิ่งของ S แล้ว $x \in S$

\[
\text{ต้องการแต่งต่างว่า } S \text{ เป็นเซตเกี๊ยว แต่เนื่องจากสัดส่วนนี้ } \mathbb{R}^n - S
\]

\[
\text{เป็นเซตเกี๊ยว}
\]

\[
\text{ให้ } x \in \mathbb{R}^n - S
\]

\[
\text{ที่กล่าวมาแล้วข้างต้น เราคิดว่าผลิตโดยการลบความเสี่ยงต้องมีอยู่ใน } S
\]

\[
\text{สำหรับทุก ๆ } x \text{ ใน } S \text{ เป็นการคลุมบีเดวิคโดยใช้ดั้ว}
\]

\end{enumerate}
เพราะฉนั้น : \(x \neq s \)
ดังนั้น \(x \) ไม่เป็นจุดสีดของ \(S \)
เพราะฉนั้น \(\exists r > 0 \) ที่ \(\forall N^* (x; r) \cap S = \emptyset \)
\(N^* (x; r) \subseteq \mathbb{R}^n - S \)
\(\{x\} \cup N^* (x; r) \subseteq \{x\} \cup \mathbb{R}^n - S \)
\(N(x; r) \subseteq \mathbb{R}^n - S \)
เพราะฉนั้น \(\mathbb{R}^n - S \) เป็นเซตเปิด
\(\forall \) เซต \(S \) เป็นเซตกลับ

2.5 ทฤษฎีบทของเปิดและ - ทฤษฎีบทเตี้ยส์

(Bozanno - Weierstrass Theorem)

ก่อนที่จะศึกษาทฤษฎีบทของเปิดและ - ทฤษฎีบทเตี้ยส์ จะต้องศึกษาเกี่ยวกับ

แนวานของเซตที่เปิดและ (bounded set) ดังนั้นนิยามไปนี้

ทฤษฎีบท 2.16 ก่อนที่ให้ \(S \subseteq \mathbb{R}^n \) ทีเป็นเซต (bounded set)
เมื่อและก็มี \(a \in \mathbb{R}^n \) และ \(r > 0 \) ซึ่ง \(S \subseteq N(a; r) \)

ตัวอย่าง 2.6 ก่อนที่ให้

\[S_1 = \{(x_1, x_2) | \ x_1 \geq 0, \ x_2 > 0, \ x_1 + x_2 \leq 1\} \]

\[S_2 = \{(x_1, x_2) | \ x_1^2 + (x_2 - 1)^2 < 1\} \]

จากที่ที่ให้ \(S_1, S_2 \) แล้วได้สังเกตุ 2.10
พิภท์ 2.10

จากที่เราพบว่า $S_1 \subseteq N(0,0); 2$ และ $S_2 \subseteq N((0,0); 2$

ดังนั้น S_1, S_2 เป็นเซตที่มีขอบ

หมายเหตุ สำหรับ $N(a, r)$ ถ้า $S \subseteq N(a, r)$ นั่นหมายความว่า S เป็นวงกลมที่อยู่ภายในวงกลม $N(a, r)$

ในกรณี 2.6 อาจจะมี a เป็นจุดซึ่ง $a \neq (0,0)$ และเลือก r ซึ่งเป็นตัวเลขที่ใหญ่กว่า 2 ก็ได้ เช่น

$S_1 \subseteq N((1,0); 3)$

ตัวอย่างของเซตที่มีขอบเช่น $S = \{(x_1, x_2) | x_1 > 0, x_2 > 0\}$

ตัวอย่างตัวเลขที่แสดงในกราฟสีที่ 1 (Quadrant ที่ 1) พิภท์ 2.11

พิภท์ 2.11
จากสภาวะที่กำหนดให้สังเกตได้ว่า ถ้า S เป็นเซตที่เปิดแบบแฝง จะหา $r > 0$ ซึ่ง $S \subseteq N((0,0) ; r)$ ดังนั้นจะเห็นได้ว่านั่นจะพบความเหมือนกันระหว่างเซต S และเซตที่เป็นรอบที่ $0 \in R^n$

ทฤษฎี 2.12 กำหนดให้ $S \subseteq R^n$

S เป็นเซตที่เปิดแบบแฝงและถ้า $r > 0$ ซึ่ง $S \subseteq N(0 ; r)$

(1) ผลลัพธ์ S เป็นเซตที่เปิดแบบแฝง

จากนั้นนิยาม จะถูก $a \in R^n$, $r > 0$ ซึ่ง $S \subseteq N(a ; r)$

ให้ $r' = ||a|| + r$

เพราะฉะนั้น $r < r'$

รูป 2.12
ต้องการให้ตัวแปร $N(a, r) \subseteq N(0, r')$

ให้ $y \in N(a, r)$

เพื่อระบุ $\|y - a\| < r$

เพราะว่า $\|y - 0\| = \|(y - a) + a\|$

$\leq \|y - a\| + \|a\|$

$\leq r + \|a\| = r'$

ดังนั้น $y \in N(0, r')$

แต่ $S \subseteq N(a, r)$

เพราะฉนั้น $S \subseteq N(0, r')$

(2) สัมประสิทธิ์ $r > 0$ ซึ่ง $S \subseteq N(0, r)$

จากนี้นั้น ให้ $a = 0$ จะได้ว่า S เป็นเซตย่อยเซต

ทฤษฎี 2.14 (Bolzano-Weierstrass theorem)

กำหนดให้ $S \subseteq \mathbb{R}^n$

ถ้า S เป็นเซตย่อยเซตและปิดและตัวบวกลาบกับไม่เป็นจุดเส้นตัดแล้วจุดของ S

ถูกอยู่บนขอบ 1 จุดใน \mathbb{R}^n ซึ่งเป็นจุดเส้นตัดของ S

(สำหรับการกล่าวถึงกราฟ n ใด ๆ และ n อยู่ในอยู่บนแกน x หรือ y

เพื่อให้ยังผ่านตัวบวกลาบกับ กราฟ $n = 2$ และใช้ 2.13 บรรยาย)

เพราะว่า $S \subseteq \mathbb{R}^n$ และ S เป็นเซตย่อยเซต

จากทฤษฎี 2.13 จะได้ว่า $r > 0$ ซึ่ง

$S \subseteq N(0, r)$

ให้ $J_1 = (x_1, x_2, \ldots, x_n)$ $| -r < x_1 \leq r$.
ข้อ 2.13

ให้ $J_1 = I_1^{(1)} \times I_2^{(1)} \times \ldots \times I_n^{(1)}$ โดยที่ J_1 เป็นเซตยอดจุด (x_1, x_2, \ldots, x_n) ที่ $x_k \in I_k^{(1)}$ และแต่ละ $I_k^{(1)}$ เป็นช่วงในปรุศณ

1. ถ้า $-\infty < x < \infty$

เพื่อแสดง $N(0; \infty) \subseteq J_1$

จะให้ $S \subseteq J_1$

เนื่อง $I_k^{(1)}$ ออกเป็น 2 ลักษณะที่น้ำดื่ม $I_{k,1}^{(1)}$, $I_{k,2}^{(1)}$

โดยที่

$I_{k,1}^{(1)} : -\infty < x_k < 0$, $I_{k,2}^{(1)} : 0 < x_k < \infty$

จากความสมมาตรภาพเพื่อบนที่อยู่ในรูป

$I_{1,k_1}^{(1)} \times I_{2,k_2}^{(1)} \times \ldots \times I_{n,k_n}^{(1)} \ldots (*)$
โดยที่ $k_1 = 1, 2$ สำหรับทุก ๆ $i = 1, 2, \ldots, n$.

จะให้ J ผลของ J_1 ตรงกันใน (*) ที่ได้ 2^n แบบเชิงแต่ละแบบเป็นส่วนในปริญญา ที่กรณี

ส่วนที่ข้างข้างที่ 2^n แบบผสมส่ง (union) กันแล้วจะได้ J_1

ส่วนที่ได้จะได้ J_2 อย่างน้อย 1 อย่างเช่นประกอบด้วยผลรวมค่าที่

จะได้ผลต่อไปนี้ J_2

ใช้วิธีการเข้ากันจะได้ J_2 ในผลของผลของที่เขียน ถ้า

$$J_2 = I_1^{(2)} \times I_2^{(2)} \times \ldots \times I_n^{(2)}$$

โดยที่แต่ละ $I_k^{(2)}$ เป็นช่วงของ (subintervals) ของ $I_k^{(1)}$ ที่ความยาวต่ำ

เท่ากับ τ

แทน $I_k^{(2)}$ เข้าเก็บกับที่เขียน $I_k^{(1)}$ และจะได้ J_3 เป็นช่วงบวก

ประกอบด้วยผลรวมค่าของเพิ่ม

โดยใช้วิธีการนี้ต่อไปเรื่อย ๆ จะได้กลุ่มช่วงที่ pomocative ผลปริญญา ถ้า J_1, J_2, J_3, \ldots, โดยได้

J_m ประกอบด้วยผลรวมค่าของเพิ่ม และ $J_m = I_1^{(m)} \times I_2^{(m)} \times \ldots \times I_n^{(m)}$ โดยที่ $I_k^{(m)} \subseteq I_k^{(1)}$

ให้ $I_k^{(m)} = [a_k^{(m)}, b_k^{(m)}]$

สำหรับ $b_k^{(m)} - a_k^{(m)} = \frac{2\tau}{2^{m-1}}$

ให้ $a_k^* = 1, 2, \ldots, \{a_k^{(m)} \mid m = 1, 2, \ldots\}$

$b_k^* = 1, 2, \ldots, \{b_k^{(m)} \mid m = 1, 2, \ldots\}$

จะได้ $a_k^* = b_k^*$
\[t_k = a_k^* (= b_k^*) \]

ให้ \(t = (t_1, t_2, \ldots, t_n) \)

ต้องการแล้วว่า \(t \) เป็นจุดติดขอบ \(S \)

ให้ \(M(t, \varepsilon) \) เป็นช่วงใด ๆ ของจุด \(t \)

เลือก \(m_0, \varepsilon \) อย่างใด ๆ

\[\frac{2r}{m_0 - 1} < \frac{\varepsilon}{2} \]

หาก \(J \subseteq M(t; \varepsilon) \)

เพราะว่า \(S \cap J \subseteq S \cap M(t; \varepsilon) \)

แต่ \(S \cap J \) ประกอบด้วยจุดเป็นจุดจำนวนไม่ซ้ำ

ต่อกับ \(S \cap M(t; \varepsilon) \neq \emptyset \)

เพื่อที่ \(t \) เป็นจุดติดขอบ \(S \)

(2.15) Cantor Intersection Theorem

กำหนดให้ \(Q_k \subseteq R^n \) โดยที่

(1) \(Q_k \neq \emptyset \)

(2) \(Q_{k+1} \subseteq Q_k \) (\(k = 1, 2, 3, \ldots \)) และ \(Q_1 \) เป็นเจต默契

(3) \(Q_k \) เป็นเจต默契สีเท่ากันแต่ละ \(k \)

แต่ \(\bigcap_{k=1}^{\infty} Q_k \) เป็นเจตภพ และ \(\bigcap_{k=1}^{\infty} Q_k \neq \emptyset \)
กิจลักษณ์ ให้ $S = \bigcap_{k=1}^{\infty} Q_k$

จากทฤษฎีบท 2.9 จะได้ว่า S เป็น geschwitzt
t่ต่อๆกันส่งผลให้ $S \neq \emptyset$ เนื่องจากส่งผลให้มี $x \in S$

เราสมมุติให้ Q_k ประกอบด้วยข้อมูลเป็นลำดับอนันต์เทียบ เพราะฉะนั้น

การกลับด้านเป็นการที่มีความสัมพันธ์อย่าง trivial case

ให้ $A = \{x_1, x_2, \ldots\}$ โดยที่ $x_i \neq x_j$ เมื่อ $i \neq j$

และ $x_k \in Q_k$

เพราะว่า A เป็นซ่อนถาะนั้น และ $A \subseteq Q_1$ ซึ่งเป็นเชิงซ้อน

ขอบเขต

สิ่งนี้จากทฤษฎีบท 2.14 จะได้ว่า A มีลู่เข้า

ให้ x เป็นลู่เข้าของ A

ต่อกลับด้านส่งผล $x \in S$ ส่งผลต่อดังกล่าว $x \in Q_k$

สำหรับทุก ๆ k

แต่ Q_k เป็น geschwitzt สิ่งนี้จะทำให้ x เป็นลู่เข้าของ Q_k

สำหรับทุก k

เพราะว่าจากทฤษฎีบท 2.11 ถ้า x ประกอบด้วยข้อมูล A เป็นลู่เข้า

อนันต์ และตั้งแต่ที่เรียก x เป็นไปได้ว่า x แค่ดังกล่าวด้าน A และยูเนี่ยน Q_k

สำหรับทุก k ทำให้ x เป็นลู่เข้าของ Q_k

เพราะว่า Q_k เป็น geschwitzt สิ่งนี้ $x \in Q_k$ สำหรับทุก k

$x \in \bigcap_{k=1}^{\infty} Q_k$

สิ่งนี้ $\bigcap_{k=1}^{\infty} Q_k \neq \emptyset$
2.6 ทฤษฎีบทเชิงปิดกุมของคินเดลิส

(Théorème de Lindelöf)

ให้เด่นยี่ตั้งต่ำทั่วถึง เป็นข้อกัน เชิงปิดกุม (covering) และทฤษฎีบทเชิงปิดกุมของคินเดลิส (Lindelöf covering theorem) ทฤษฎีบทเชิงปิดกุมของ

Heine-Borel (Heine-Borel covering theorem) รวมไปถึงเรื่องเกี่ยวกับเชิงปิดกุมแบบ (compact set)

กำหนด $\mathcal{F} = \subseteq \mathbb{R}^n$, $E\{E_v | \mathbb{R}^n \cap E \subseteq \bigcup_{v \in I} E_v$.

ถ้า E_v เป็นเชิงปิดส่วน ๆ v แล้วเรียกว่าเชิงปิดส่วน E_v เป็นเชิงปิดส่วน (open cover) ของ S.

กำหนดให้ \mathcal{F}, \mathcal{F}_1 เป็นเชิงปิดกุมของ S แล้วเรียกว่า \mathcal{F}_1 เป็นเชิงปิดกุมแบบ (subcover) ของ \mathcal{F} เสร็จและเกี่ยวกับ $\mathcal{F}_1 \subseteq \mathcal{F}$.

ตัวอย่าง 2.7 ให้จีรฟรุ๊งส์บ้านเชิงปิดกุมและใน

(1) กำหนด $E_n = \{\frac{1}{n}, \frac{2}{n}\}$, $n = 2, 3, 4, \ldots$

$\quad S = \{0, 1\}$

แล้ว $\mathcal{F} = \{E_n | n = 2, 3, 4, \ldots\}$ เป็นเชิงปิดกุมของ S

เพราะว่า $(0, 1) \subseteq \bigcup_{n=2}^{\infty} \{\frac{1}{n}, \frac{2}{n}\}$

(2) ให้ $S = \{(x, y) | x \geq 0, y \geq 0\}$

$\mathcal{F} = \{x, y\}$ การเซนจุกส์เรียกเชิงปิดกุมแบบ (x, y)
และ $x = \epsilon$ ให้เป็นจุดบนกลุ่ม S ที่รูป 2.14

รูป 2.13

ทฤษฎี 2.16

กำหนดให้ $x \in \mathbb{R}^n$ และ S เป็นเซตเปิดใน \mathbb{R}^n ที่ $x \in S$ แล้วจะมี $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ และ $r > 0$ ซึ่ง y_1, y_2, \ldots, y_n, r เป็นจำนวนจริงที่ $x \in N(y, r) \subseteq S$

กรณีที่ $x = (x_1, x_2, \ldots, x_n)$ และ S เป็นเซตเปิด

สำหรับ $\epsilon > 0$ ให้ $N(x; \epsilon) \subseteq S$

เลือก $\delta > 0$ ซึ่ง $0 < \delta < \epsilon$ และ S เป็นจำนวนจริงที่ $x_1 - \frac{\delta}{2\sqrt{n}} < x_1 + \frac{\delta}{2\sqrt{n}}$

เลือกจำนวนจริงที่ $y_1 \in S$

\[x_1 - \frac{\delta}{2\sqrt{n}} < y_1 < x_1 + \frac{\delta}{2\sqrt{n}} \]

จะได้ว่า $|y_1 - x_1| < \frac{\delta}{2\sqrt{n}}$

ทำให้สามารถดูทีละลำดับ

โปรดระวังการเขียนแบบ this.

โปรดระวังการเขียนแบบ this.

โปรดระวังการเขียนแบบ this.
\[|y_2 - x_2| < \frac{\delta}{2\sqrt{n}} \]
\[|y_3 - x_3| < \frac{\delta}{2\sqrt{n}} \]
\[\ldots \]
\[|y_n - x_n| < \frac{\delta}{2\sqrt{n}} \]

โดยที่ \(y_2, y_3, \ldots, y_n \) เป็นค่าความแปรปรวน

ให้ \(Y = \{y_1, y_2, \ldots, y_n\} \)
\[(y_1 - x_1)^2 + (y_2 - x_2)^2 + \ldots + (y_n - x_n)^2 < \frac{\delta^2}{4n} + \frac{\delta^2}{4n} + \ldots + \frac{\delta^2}{4n} \]
\[= \frac{n\delta^2}{4n} \]
\[= \frac{\delta^2}{4} \]
\[= \left(\frac{\delta}{2} \right)^2 \]

เพื่อให้\[\| Y - x \|^2 < \left(\frac{\delta}{2} \right)^2 \]
\[|y - x| < \frac{\delta}{2} \]
\[x \in N(y, \frac{\delta}{2}) \]

ให้ \(r = \frac{\delta}{2} \) ดังนั้น \(r \) เป็นค่าความแปรปรวน และ
\[x \in N(y, r) \]
ทฤษฎี 2.17 (Lindelöf covering theorem)

ถ้าหากให้ \(A \subseteq \mathbb{R}^n \) และ \(F \) เป็นเซตปิดกลุ่มตัวอย่างเป็นเชิงสมบัติของ \(A \)
แล้วจะมีกลุ่มตัวอย่างปิดตัว \(F \) เป็นเซตปิดกลุ่มของ \(A \)

ให้ \(G = \{ A_1, A_2, \ldots \} \) เป็นเซตของจำนวนตัวต่ำสุดที่เกินกับและทั้งทีเป็นจำนวนตรรก

ให้ \(x \in A \)

เพราะว่า \(F \) เป็นเซตปิดกลุ่มตัวอย่างเป็นเชิงสมบัติของ \(A \)

ดังนั้น แต่ละเซตของ \(S \) ใน \(F \) ซึ่ง \(x \in S \)

โดยทฤษฎี 2.16 จะได้ว่า

มีจำนวน \(A \in G \) ซึ่ง \(x \in A \subset S \)

d้วย \(A_k \) เป็นจำนวนตัวต่ำสุดที่เกินกับและ

เส้น \(A_k \) ซึ่ง \(k \) มีจำนวนตัวต่ำสุดเรียกอีกว่า \(A_n(x) \)

ดังนั้น \(x \in A_n(x) \subseteq S \)
สำหรับทฤษฎีบทงอกลุ่มไม่ต่อเนื่อง ในเรื่องต่อจากทฤษฎีบท เหลิ่นสีเมทเมติก (Linde of covering theorem) และทฤษฎีบทตัวรวมของสัมพัทธ์ (Cantor intersection theorem) ในการศึกษานี้

ทฤษฎีบท 2.18 กำหนดให้ $A \subseteq \mathbb{R}^n$ และ F เป็นเซตกลุ่มไม่ต่อเนื่องของ A ซึ่งเป็นเซตตัดและไม่ยับเยิน ศักย์เมื่อกลุ่มไม่ต่อเนื่องของ F เป็นจุกจากสีเหลิ่นช่างกลุ่มไม่ต่อเนื่อง A.

การศึกษา จากรูปทฤษฎีบทงอกกลุ่มไม่ต่อเนื่อง (ทฤษฎีบท 2.17) จะได้ว่า กลุ่มไม่ต่อเนื่องเป็นจุกจำแนกได้ของ F ซึ่งเป็นเซตกลุ่มไม่ต่อเนื่อง A ให้กลุ่มไม่ต่อเนื่องเป็นจุกจำแนกได้ของ F ซึ่งเป็นเซตกลุ่มไม่ต่อเนื่อง A ให้เป็น $\{I_1, I_2, I_3, \ldots\}$.

ให้ $s_m = \bigcup_{k=1}^{m} I_k$ สำหรับ $m \geq 1$

เพราะว่า I_k เป็นเซตตัด

ดังนั้น s_m เป็นเซตตัด

ต่อไปนี้เลือดว่า m_0 ซึ่งมีลักษณะ (union) $\bigcup_{k=1}^{m_0} I_k$ เป็นเซตกลุ่มไม่ต่อเนื่อง A.
ให้ \(Q_1 = A \)

\[Q_m = A \cap (R^n - S_m) \quad \text{สำหรับ} \quad m > 1 \]

เพราะว่า \(A, R^n - S_m \) เป็นเซตสัม

สังยัน \(Q_m \) เป็นเซตสัม สำหรับ \(m > 1 \)

เพราะว่า \(S_m \subseteq S_{m+1} \)

สังยัน \(Q_{m+1} \subseteq Q_m \)

เพราะว่า \(Q_m \subseteq A \) และ \(A \) เป็นเซตสัมยอดเขา

สังยัน \(Q_m \) เป็นเซตสัมยอดเขา

สมมุติว่า \(Q_m \neq \emptyset \) สำหรับทุก \(m \)

จากทฤษฎีบทการรวมของสัมตรง (Cantor Intersection Theorem)

จะได้ว่า

\[\bigcap_{k=1}^{m} Q_k \neq \emptyset \]

เพราะทั้งนี้ \(x_0 \in A \) ซึ่ง \(x_0 \in Q_m \) สำหรับทุก \(m \geq 1 \)

ก็คืออิจฉา (เพราะว่า \(Q_m = R^n - S_m \) และ

\[S_m = \bigcup_{k=1}^{m} I_k \] และ \(\{I_1, I_2, I_3, \ldots \} \) เป็นเซตสัมยอดเขาของ \(A \))

สังยัน \(m_0 \) ซึ่ง \(Q_{m_0} = \emptyset \)

\[Q_{m_0} = A \cap (R^n - S_{m_0}) = \emptyset \]
เร้าให้ทราบในลักษณะว่าถ้า $S \subseteq \mathbb{R}^n$ เป็นเซตย่อ และทำอย่างแย่แล้วเจอเซตกลุ่มของ S ซึ่งเป็นเซตย่อตามที่ได้กล่าวมาเพียงเชิงกลุ่มซึ่งเป็นจำนวนจำกัด ในตอกรณี เราจะศึกษาถึงเพียงจากเซตย่อเป็นเซตย่อและมีขอบเขตแต่มีที่ปิดเข้าเรียกว่าเป็นเซตย่อมี

จากทฤษฎีเจตุปุกกลุ่มใน - เราจะย้ายให้เราตัวอย่างเจตุปุกกลุ่ม (compact set)

 víálm 2.18 $S \subseteq \mathbb{R}^n$

เซต S ที่เจตุปุกกลุ่ม (compact set) เมื่อผลลัพธ์ถึงทุก ๆ เซตกลุ่มของ S ซึ่งเป็นเซตย่อเมื่อเจตุปุกกลุ่มเป็นจำนวนจำกัด

จากทฤษฎีเจตุปุกกลุ่มใน - เราจะย้ายให้เราตัวอย่างเจตุปุกกลุ่ม (compact set) ของเซตย่อใน \mathbb{R}^n เป็นเจตุปุกกลุ่ม
ทฤษฎี 2.19 กำหนดให้ \(S \subseteq \mathbb{R}^n \)

(1) \(S \) เป็นเซตปิดกลุ่มแนบ

(2) \(S \) เป็นเซตที่มีขอบ

(3) คุณ ๆ สมาชิกของ \(S \) ซึ่งเป็นเซตสองเมื่อสูงสุดใน \(S \)

การพิสูจน์ว่า (1), (2) และ (3) สัมพันธ์กันนั้น เราก็ต้องพิสูจน์ว่า

(1) \(\Rightarrow \) (2), (2) \(\Rightarrow \) (3), (3) \(\Rightarrow \) (2) และ (2) \(\Rightarrow \) (1)

แต่จากทฤษฎีบทเซตปิดกลุ่มใน - ไปเสด็จ เราได้แล้วว่า (2) \(\Rightarrow \) (1)

ส่งนั้นจะพิสูจน์ว่า (1) \(\Rightarrow \) (2), (2) \(\Rightarrow \) (3) และ (3) \(\Rightarrow \) (2) เท่านั้น

สิ่งนี้จะพิสูจน์ (1) \(\Rightarrow \) (2)

ตัวการพิสูจน์ว่า \(S \) เป็นเซตที่มีขอบ

เลือก \(x_0 \in S \)

กลุ่มอย่างนั้น \(N(x_0, k) \), \(k = 1, 2, 3, \ldots \) เป็นเซตปิดกลุ่มแนบเป็นเซตเปิดของ \(S \)

หากสกัดมาของเซตปิดกลุ่มแนบ จะได้ว่ากลุ่มอย่างนั้นเป็นเซตปิดกลุ่มแนบเป็นเซตเปิดกลุ่มแนบของ \(S \) ด้วย

ส่งนั้น \(S \) เป็นเซตที่มีขอบ

ตัวการพิสูจน์ว่า \(S \) เป็นเซตที่มีขอบ

สิ่งนี้ไม่เป็นไปเลยที่ส่่น

จะสูงสุดผ่าน \(y \) ของ \(S \) ซึ่ง \(y \notin S \)

ให้ \(x \in S \)

ให้ \(r_x = \frac{\|x - y\|}{2} \)
Let \(x > 0 \)

\[
N(x; x) \quad (x \in S)
\]

be the neighborhood of \(x \) in \(S \).

Then, the neighborhood of \(x \) can be written as:

\[
S = \bigcup_{k=1}^{n} N(x_k, r_k)
\]

If \(r \) is a constant, then the neighborhood of \(x \) is:

\[
N(x; r) = \{ y \in \mathbb{R}^n \mid \| y - x \| < r \}
\]

Let \(y \in N(x; r) \)

\[
\| y - z \| < r \quad \text{for all} \quad k = 1, 2, \ldots, n
\]

Then:

\[
\| y - x_k \| = \| y - z + z - x_k \| \\
\| z - x_k \| \geq \| y - x_k \| - \| y - z \| = 2r_k - \| y - z \| > r_k
\]

Therefore:

\[
z \notin N(x_k, r_k) \quad \text{for all} \quad k = 1, 2, \ldots, n
\]

Hence:

\[
N(y; r) \cap \bigcup_{k=1}^{n} N(x_k, r_k) = \emptyset
\]

\[
N(y; r) \cap S = \emptyset
\]

Therefore:

\[
N(y; r) \cap S = \emptyset
\]

Since \(y \) is not in the neighborhood of \(S \),

\(S \) is an open set.
সমূহটি (2) \Rightarrow (3)

সমূহটি S বন্ধনীয় এবং মিসেজে 23

ঠাকুর T ⊂ S এবং T বন্ধনীয় 25

সে তাই T মিসেজে 26

কোনো পূর্ব নামকরণ বহুল্য না প্রদর্শিত হেলে বলা Bolzano - Weierstrass theorem দিয়ে তাই T মিসেজে 27

যে অ্যাক্সেস দেওয়া T

সেভালে x এ পুনরাবৃত্ত হয় T

সেবালে x এ পুনরাবৃত্ত হয় S বলায়

প্রতিদ্বন্দ্বিতা S এবং x

সেভালে x ∈ S

সমূহটি (3) \Rightarrow (2)

সমূহটি সাধারণ S কোনো পূর্ব নামকরণে মিসেজে 28

তাই প্রদর্শিত তাই S এবং x মিসেজে 29

সমূহটি S নিয়ন্ত্রণ 30

সেখানে x_m ∈ S শুনে, $\|x_m\| > m$ সর্বশেষ তাই m > 0

যে T = {x_1, x_2, ...} প্রতিদ্বন্দ্বিতা S কোনো পূর্ব নামকরণ 31

সেভালে T মিসেজে 32

যে y এতে পুনরাবৃত্ত হয় T

সেখানে m > 1 + \|y\|

$\|x_m - y\| > \|x_m\| - \|y\|

> m - \|y\|

> 1

ঠাকুরো ডাঙ্গায় ঘোষ করা হয় যে অ্যাক্সেস এবং y এতে পুনরাবৃত্ত হয় T
ส่วนนี้ S มีขอบเขต

สำหรับการคิดถึง (2) ต้องคิดถึงว่า S เป็นเซตมีตัว

ให้ x เป็นจุดสัมผัสของ S

ค่าของ $N(x; \frac{1}{k})$ $k = 1, 2, 3, \ldots$

$N(x; \frac{1}{k}) \cap S \neq \emptyset$

ให้ $x_k \in N(x; \frac{1}{k}) \cap S$

ให้ $T = \{x_1, x_2, \ldots\}$

เพียงพอที่ $T \subseteq S$ และ T เป็นเซตจำกัด

ส่วนนี้ T มีจุดสัมผัสใน S

ให้ y เป็นจุดสัมผัสของ T

เพื่อขอเพื่อน $y \in S$

ต้องการแสดงว่า $y = x$

ส่งผล $y \neq x$

เพื่อแสดง $|y - x| < |y - x_k| + |x_k - x|$

$< |y - x_k| + \frac{1}{k}$ สำหรับ $x_k \in T$

เลือก k_0 ซึ่ง $k_0 > \frac{2}{|y - x|}$

เพื่อแสดง $\frac{1}{k_0} < \frac{1}{2} |y - x|$

ส่งผลทั้งหมด $k \geq k_0$

\[\frac{1}{k} \leq \frac{1}{k_0} \]
เพราะฉนั้น

\[\|y - x_1\| < \|y - x_k\| + \frac{1}{2} \|y - x\| \]

\[\|y - x_k\| > \frac{1}{2} \|y - x\| \]

ให้ \(r = \frac{1}{2} \|y - x\| \)

สังเกต \(\|y - x_k\| > r \)

\[y \notin N(x_k, r) \quad \text{สำหรับ} \quad k \geq k_0 \]

เพราะฉนั้น \(y \) ไม่เป็นจุดเกณฑ์ของ \(T \)

เกิดขึ้นต่อไปนี้

เพราะฉนั้น \(y = x \)

จะได้ว่า \(x \in S \)

สังเกต \(S \) เป็นจุดเดียว

สำหรับจุดเดียวของจุดใน \(\mathbb{R}^n \) เป็นเพียงจุดเดียวเท่านั้น

\(\text{สำหรับ} \)

กรณีทั่วไปให้ทฤษฎี (Topology)

แบบฝึกหัด 2

1. จงคิดว่า \(N((0,0); 2) \) เป็นจุดเดียว

2. จงเขียนแทนพร้อมทั้งจุดภายใน (interior point) จุดกลางอน (exterior point) จุดกลาง (boundary point) ของจุดต่อไปนี้

(1) \(S_1 = \{ (x_1, x_2) \mid 0 \leq x_1, 0 \leq x_2, x_1 + x_2 < 2 \} \)

(2) \(S_2 = \{ (x_1, x_2) \mid 0 \leq x_1, 0 \leq x_2, x_1^2 + x_2^2 < 4 \} \)

(3) \(S_3 = \{ (x_1, x_2) \mid |x_1| + |x_2| < 1 \} \)
(4) \(S_4 = N((0,0,0); 3) \)
(5) \(S_5 = \{ (x_1,x_2) \mid x_1x_2 < 1 \} \)

3. เซตให้ \(Z \) เป็นเซตเส้นตรงหรือเซตระดับ พร้อมกันให้เห็นเส้น

จงเขียนกราฟของเซตในข้อ 2

4. กำหนดให้ \(S \) เป็นเซต หาค่า \(a \) ที่กำหนดให้เป็นคุณสมบัติของ \(S \) หรือไม่

เพื่อเหตุให้

(1) \(S_1 = \{ (x_1,x_2) \mid x_1x_2 < 1 \} \), \(a = (1,1) \)
(2) \(S_2 = \{ (x_1,x_2) \mid 0 < x_1, 0 < x_2 \; x_1 + x_2 < 1 \} \), \(a = (0,1) \)
(3) \(S_3 = \{ (x_1,x_2) \mid x_1 + x_2 < 1 \} \), \(a = (1,1) \)
(4) \(S_4 = \{ (x_1,x_2) \mid |x_1| + |x_2| < 1 \} \), \(a = (1,0) \)
(5) \(S_5 = N((0,0,0); 1) \); \(l = (-\sqrt{3}, -\sqrt{3}, \sqrt{3}) \)

5. จงพิจารณาข้อข้าง เซตใน \(R^n \) เป็นเซต

เนื่อง \((a,b) \times (a,b) \times \ldots \times (a,b) \) เป็นเซตเปิด

6. จงแสดงข้อข้างของคุณสมบัติของ \(R^n \) เป็นเซตเปิดใน \(R^n \)

7. ที่ \(S \subseteq R^n \) จงแสดงว่า \(\text{Int.} \; S \) เป็นผลรวม (union) ของเซตเปิด

ที่หมดผลเป็นสับเซตของ \(S \)

เนื่อง แสดงว่า \(\text{Int.} \; S \) เป็นเซตเปิดที่มีคู่สับเซตเป็นสับเซตของ \(S \)

8. กำหนดให้ \(S \subseteq R^n, T \subseteq R^n \) จงพิจารณา

(1) \(\text{Int.} \; S \cap \text{Int.} \; T = \text{Int.} \; (S \cap T) \)
(2) \(\text{Int.} \; S \cup \text{Int.} \; T \subseteq \text{Int.} \; (S \cup T) \)

จงขยายอธิบายที่ผลลัพธ์ว่า \(\text{Int.} \; (S \cup T) \not= \text{Int.} \; S \cup \text{Int.} \; T \)
9. ใดๆ $S \subseteq \mathbb{R}^n$

S เรียกว่าเซตสมบูรณ์ (convex set) เนื่องจากทั้งหมดทุกๆ $x, y \in S$ และทุกๆ ค่า t ที่ $0 < t < 1$ จะได้ว่า $tx + (1 - t)y \in S$

จะต้องมีว่า

(1) $N(x, x) \subseteq \mathbb{R}^n$ เป็นเซตสมบูรณ์

(2) มีเซตเป็น \mathbb{R}^n เป็นเซตสมบูรณ์

(3) $\text{Int} S$ เป็นเซตสมบูรณ์ สำหรับเซต S ซึ่งเป็นเซตสมบูรณ์

10. ใดๆ S ดำนินหารบของ xy ซึ่งจุดที่อยู่กลาง x, y ทีที่มี $x > 0$

และ x เป็นเลขจริงบวก เป็นเซตประกอบที่มีต่อไปนี้

$\{(x, y) \mid x > 0, y > 0\}$

$$
\star \quad \star \quad \star
$$