ตอนที่ 1
บทปฏิบัติการพื้นฐาน

บทปฏิบัติการที่เล่มนี้นำเสนอในตอนนี้ มีวัตถุประสงค์ให้นักศึกษาเรียนรู้ถึงการศึกษาองค์ประกอบหลักของระบบมือถือ เพื่อให้เข้าใจความสัมพันธ์ขององค์ประกอบเหล่านี้ และเป็นการนำสู่ความเข้าใจที่ดีอย่างหลักในระบบโทรศัพท์ ดังที่ได้ศึกษาจากตัวการในระบบโทรศัพท์ BI 221 ได้แก่ ต่างระบบมือถือ ประมวลผลสัญญาณมือถือ การเปลี่ยนแปลงแทนที่ รวมถึงการฝึกปฏิบัติสร้างระบบมือถือ หลักขั้น เพื่อให้เป็นผู้พัฒนาการศึกษาจากระบบมือถือที่มีอยู่ตามธรรมชาติ
บทปฏิบัติการที่ 1
ปัจจัยทางกายภาพของระบบนิเวศ

หลักการ

ระบบนิเวศประกอบด้วยสององค์ประกอบหลัก คือ องค์ประกอบที่ไม่มีชีวิต (abiotic component) และ องค์ประกอบที่มีชีวิต (biotic component) องค์ประกอบที่ไม่มีชีวิตประกอบด้วย ปัจจัยทางกายภาพ (physical factors) และปัจจัยทางเคมี (chemical factors) ทั้งสององค์ประกอบลักษณะพื้นฐานเป็นปัจจัยต่าง ๆ ที่ช่วยให้ ระบบดังกล่าวมีสภาวะที่ไม่มีชีวิต ผ่านเรียบเรียงสู่องค์ประกอบที่มีชีวิตผ่านทางกระบวนการสังเคราะห์แสง (photosynthesis).

ปัจจัยทางกายภาพ มีบทบาทสำคัญเป็นสัดส่วนแรกของการก้าวต่อไปของ กลุ่มสิ่งมีชีวิต (community) ในระบบนิเวศ โดยเฉพาะอย่างยิ่ง ลูกลม ลูกรัง และความชื้น เป็นปัจจัยหลักของการก้าวต่อไปของสิ่งมีชีวิต (biome) บนพื้นที่ต่าง ๆ บนโลกของสิ่งมีชีวิต (biosphere) ที่ทำให้ความสมดุลของระบบนิเวศที่เป็นส่วนประกอบหลักของป่า มีบทบาทคงสภาพหรือเปลี่ยนแปลงลักษณะของปัจจัยทางกายภาพได้ด้วย

วัสดุประสงค์

1. เพื่อศึกษานิเทศก์ของปัจจัยทางกายภาพ ในระบบนิเวศบนภู (terrestrial ecosystem) และในสุขภัณฑ์ (aquatic ecosystem)
2. เพื่อฝึกนักดำเนินงานที่แสดงความเข้าใจระบบนิเวศตัวอย่าง
3. เพื่อศึกษาความสัมพันธ์ระหว่างชีวิตและปัจจัยทางกายภาพในระบบนิเวศตัวอย่าง

ระเบียบวิธี

เลือกระบบนิเวศที่จะศึกษาในบริเวณพื้นที่วิจัย เพื่อความสะดวกในการปฏิบัติงาน ระบบนิเวศที่จะศึกษาในการวิจัย ขอบเขต (boundary) ที่แน่นอน เพื่อให้ข้อมูลที่ได้บันทึกความถูกต้องมากที่สุด และช่วยประหยัดเวลาในการปฏิบัติงานอีกด้วย ขณะนี้ที่มีอยู่ภายในมหาวิทยาลัย เป็นตัวอย่างที่ดีสำหรับใช้ศึกษาระบบนิเวศ
1.1 การศึกษาอนุกรมของกลุ่มสิ่งมีชีวิต (community boundary)

1.1.1 การหาพื้นที่ของสาระ ให้ลอกกอนเขตและระบุระดับของสาระที่จะสังเกตสิ่งมีชีวิตในแผ่นเอกสาร (data sheet) ที่จัดไว้ให้ท้ายหนังสือชั้นร่วม ถ้ามีสิ่งมีชีวิตที่การจัดงานหลักส่วนที่ถ่วงที่สุด และข้อมูลที่สูงของสาระสามารถทำได้โดยการใช้เครื่องมือความวัด หรือเดินบันทึก แล้วนำมามาค้นหาพื้นที่ของสาระ

1.1.2 การหาความลึกของสาระ จาก ณ จุดต่าง ๆ โดยการหมายเหตุที่สูงที่สุดกับปลายน้ำที่แรงน้ำได้แล้ว

การหาความลึกนั้นควรใช้หลักจากของสมมิตที่มีналึงสิ่งมีชีวิต แล้วนำมามาค้นหา

1.2 การหาค่าอุณหภูมิผลเฉลี้ยของน้ำ (water temperature profile)

1.2.1 ใช้เครื่องมือวัดผลเฉลี้ยอุณหภูมิที่มีน้ำ พยัญชนะกับอุณหภูมิอากาศ

1.2.2 ใช้เครื่องมือวัดผลเฉลี้ยน้ำ (water sampler) ตักน้ำในระยะห่างจากที่ระดับ

ความลึกต่างกัน คือ 0.25 เมตร, 0.50 เมตร, 0.75 เมตร, 1 เมตร, 1.25 เมตร, 1.50 เมตร, 1.75 เมตร เพื่อทำผลการผลิตความลึกที่เล็กน้ำเมื่อมีต่อไปจนถึงสะพานแล้วให้ทอเริมมัลติวัดอุณหภูมิผลเฉลี้ยน้ำที่ระดับความลึกที่ระดับข้างต้น แล้วกำหนดจุด (plot)ลงบนกระดาษ เพื่อดำเนินการอุณหภูมิผลเฉลี้ยน้ำ

1.3 การศึกษาสภาพแวดล้อมของน้ำ (water condition)

1.3.1 สังเกตสิ่งลักษณะของน้ำเป็นอย่างไร

1.3.2 ตรวจสอบสิ่งมีชีวิตในสมมิตที่ระบบที่น้ำหรือไม่

1.3.3 สภาได้รับน้ำมาจากแหล่งน้ำโดยบ้าง

1.4 การหาค่าความส่องสว่างและความสูงของน้ำ (light penetration and turbidity)

ความเสี่ยงของแสงที่ส่องลงไปในน้ำนั้นกว่าสิ่งมีชีวิตต่อสิ่งมีชีวิตและผลผลิต (productivity) ของสาระสูงสุด ลักษณะเฉพาะในช่วงการส่องสว่างในน้ำได้แก่พืชและตัวส้มสีสันต์ โดยเฉพาะกลุ่มที่เป็นพืชสาหร่าย (microscopic algae plankton) และ อนุภาคแขวนลอย (debris) ต่าง ๆ

* เป็นชนิดตัดแปลงมาจากแบบของ Vandorn รายละเอียดอยู่ในบทปฏิบัติการที่ 2
เครื่องมือที่ใช้วัดความลึกในเรลลัจโดยแยกแสงโดยไม่ใช่ เซกชิดิสก์ (secchi disk)
(รูปที่ 1-1 ถล.) ซึ่งประกอบด้วยแผ่นแก้วใสและแผ่นสีเขียวประมาณ 20 เซนติเมตร เซกชิดิสก์ ใบนี้ใช้กับเซกชิดิสก์สามารถนับมากกว่าครึ่งของแสงแล้วได้ตามมิติอย่างไร

1.4.1 ใบนี้ เซกชิดิสก์ ทองเหลืองในน้ําจนกระทั่งมองไม่เห็นสีสาธารณ堋แซกชิดิสก์ ทีหนึ่ง
ความลึก X ระดับอันได้ สมุทิตให้เป็นความลึกที่ X เซนติเมตร ตีแผ่นแซกชิดิสก์ ขึ้นมาจาก
ข้อมูลเหลืองสีสาธารณ堋แซกชิดิสก์ ถึงครั้งหนึ่ง บันทึกระยะความลึกได้ สมุทิตได้ Y
เซนติเมตร

1.4.2 ใบนี้แซกชิดิสก์ ทองเหลือง ๆ จุดที่พื้นฐานลึกของ X และ Y จากบันทึก
มารอย่างถูกต้อง ขอบเขตของความส่องสว่าง (limit of visibility) นับจากสุดท้าย

\[
\text{limit of visibility} = X + Y
\]

รูปที่ 1-1 ถล. เซกชิดิสก์ แต่ละเกิดที่ใช้ใบนี้มาเป็นแซกชิดิสก์ เพื่อให้แซกชิดิสก์
มองได้ในแนวต่างกันที่ระดับเกือบสิ่งนี้ การตีแผ่นแซกชิดิสก์ ให้สเกลตรีดูนี้ ตามรูปรควำมบวก
ของผู้พิมพ์เพื่อ เพื่อให้ใกล้เคียงกัน ห้ามให้เกิดการส่องสว่าง เซกชิดิสก์

1.5 การศึกษาระหว่างประกอบของตะกอน (composition of sediment)

การตกแต่งของดินและพื้นที่โดยรอบสารในวัสดุมีประมาณ 2 เหมาะว่ามี ลักษณะความสูงสี่เหลี่ยม (topography) เป็นอย่างไร มีการเปลี่ยนแปลงในลักษณะของความสูงสี่เหลี่ยมหรือไม่ ลักษณะความสูงสี่เหลี่ยม เปลี่ยนแปลง ชิดและลักษณะของพื้นที่เว้นแต่มีการเปลี่ยนแปลงไปด้วยหรือไม่

สำรวจสภาพพื้นจากระดับแนวของสารในป่าถึงกันน้ำ เช่น เป็นพื้นแท่ง เช่นการรวด เลนหรือตนเอง ดูสี กลิ่น

เครื่องสำเร็จสำหรับตัดดินเรียกว่า แบรบ หรือ เครื่องกรด (grab or dredge) แต่ละชนิดถ้ารับการออกแบบเพื่อให้เหมาะสมกับการใช้งานและเหมาะสม เช่น ออร์เรกซ์พีแอลแอมด์แอล (orange peel sampler) ใช้ตัดดินได้ดีขึ้นดีขึ้น จึงเหมาะสมสำหรับการตัดดินจากพื้นที่ที่ทรัพย์หรือที่ดิน สำหรับตัดรูปแบบเป็นตัวบรรจุ เลียนบน VERSION (Ekman dredge) เหมาะสำหรับการตัดดินโดยตรงทรัพย์สินบนในแนวแนวนอนหรือแนวขวาง พบบอร์ด (Ponar grab) เหมาะสำหรับการตัดดินจากพื้นที่ท้องถิ่นที่ไม่สะดวกสบายทางเดินเล็กมาก ตัดผนังรูปแบบ (Petersen grab) ขนาดระดับสนับสนุนพื้นฐานความจุ 0.06 x 0.09 เมตร² หนัก 13.7–31.8 กิโลกรัม (น้ำหนักเพิ่มขึ้นได้ในกรณีเลือกตัวอย่างที่ไม่ดี)

เครื่องสำเร็จเป็นบริษัทที่มีการตรวจสอบ และการประมวลผลแบบปัจจุบัน (บุคคล 1–1 ชั่วโมง) เหมาะสำหรับการตัดดินขั้นพื้น หรือบริเวณ ตัดดินที่ตั้งจากพื้นที่ที่มีความลึกมากและน้ำไหลเช้า เครื่องสำเร็จสำหรับตัดดินที่ใช้แบบปฏิบัติการนี้ คือ พีแอลแอมด์แอล หรือซีที็อทแอนด์เดoxyd ตัดดินเชิงแบบขึ้นกับ ดีเอ็มซี กลับยืดและหลอมหลอมปล่อยให้เครื่องตัดดินลงที่พื้นปลาย ดังนี้การตัดดินอยู่ในแนวนอนหรือขอบจมฉนวนเครื่องตัดดินและยืดและถูกใช้ 

1.5.1 นำตัวอย่างกระเจิงไฟให้น้ำหนักเปียก (wet weight) 20 กรัม แล้วลงในกระร่อนเปลี่ยนไฟ (crucible) ที่ทาระน้ำหนักกล่าว

1.5.2 อบให้แห้งในอุณหภูมิ 105 องศาเซลเซียส ใช้เวลา 24 ชั่วโมง

1.5.3 ชั่วโมงน้ำหนักตั้งโต๊ะแห้ง น้ำหนักที่ได้เรียกว่า น้ำหนักแห้ง (dry weight)

1.5.4 นำกระร่อนเปลี่ยนไฟที่มีดินในผ่านแล้วใส่บริเวณชั่วโมงน้ำหนักกล่าวในชั่วโมง 1.5.3 แล้วที่อุณหภูมิ 600 องศาเซลเซียส ใช้เวลา 1 ชั่วโมงจนเป็นแก้วแล้วน้ำหนักอีกครั้ง น้ำหนักที่ได้มีเรียกว่า น้ำหนักแห้ง (ash weight) นำมาคำนวณหาค่าต่อไปนี้
ความชื้นของตะกอน (sediment moisture) = \frac{100}{(น้ำหนักปะกัน - น้ำหนักแห้ง)}
(หน่วยเป็นร้อยละของน้ำหนักปะกัน)

ปริมาณของสารินทรีย์ (organic content) = \frac{100}{(น้ำหนักแห้ง - น้ำหนักแห้ง)}
(หน่วยเป็นร้อยละของน้ำหนักแห้ง)

ปริมาณของแร่ธาตุ (mineral content) = 100 - ปริมาณของสารินทรีย์
(หน่วยเป็นร้อยละของน้ำหนักแห้ง)

แบบรายงานการสำรวจปัจจัยทางกายภาพของระบบนิเวศ (Data Sheet)

ชื่อหินสกุล .................. วันที่ ..................
สถานที่ ...................... รูปแบบของกลุ่มสิ่งมีชีวิต ..................

1. แผนที่แสดงขอบเขตสถานที่สำรวจและเก็บตัวอย่าง
2. ข้อมูลหลักลักษณะของสถานีที่สำรวจ (station descriptions)

<table>
<thead>
<tr>
<th>ลำดับ</th>
<th>อุณหภูมิ(องศาเซลเซียส)</th>
<th>ความชื้น</th>
<th>ความลึก(เมตร)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ความกว้างเลื่อน
ความยาวเลื่อน
ขนาดของพื้นที่โดยประมาณ

<table>
<thead>
<tr>
<th>ลำดับของข้อมูล</th>
<th>ตัวแปรของสถานีที่ทำการสำรวจ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>อุณหภูมิ</td>
<td></td>
</tr>
<tr>
<td>ความชื้น</td>
<td></td>
</tr>
<tr>
<td>ความลึก(เมตร)</td>
<td></td>
</tr>
<tr>
<td>ลักษณะท้ายไหงน้ำ</td>
<td></td>
</tr>
<tr>
<td>สิ่ง</td>
<td></td>
</tr>
<tr>
<td>กลิ่น</td>
<td></td>
</tr>
<tr>
<td>ทางน้ำเข้า</td>
<td></td>
</tr>
<tr>
<td>ทางน้ำออก</td>
<td></td>
</tr>
<tr>
<td>ค่าความดันสูงสุด</td>
<td></td>
</tr>
<tr>
<td>วัสดุโดยละเอียด</td>
<td></td>
</tr>
<tr>
<td>การวิเคราะห์ตระกูล</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>น้ำหนักเบียค (กรัม)</td>
<td></td>
</tr>
<tr>
<td>น้ำหนักแห้ง (กรัม)</td>
<td></td>
</tr>
<tr>
<td>น้ำหนักแห้ง (กรัม)</td>
<td></td>
</tr>
<tr>
<td>ความชื้นของตระกูล (ร้อยละของน้ำหนักเบียค)</td>
<td></td>
</tr>
<tr>
<td>ปริมาณของสารอินทรีย์ (ร้อยละของน้ำหนักแห้ง)</td>
<td></td>
</tr>
<tr>
<td>ปริมาณของเจ้าอุตุ (ร้อยละของน้ำหนักแห้ง)</td>
<td></td>
</tr>
</tbody>
</table>

แบบฝึกหัดบทปฏิบัติการที่ 1

1. สถานที่ทำการสำรวจ มีการเปลี่ยนแปลงลักษณะของ topography หรือไม่ ถ้ามี จะมีความสัมพันธ์กับสิ่งมีชีวิต ณ บริเวณนั้นหรือไม่ จงอธิบาย
2. จงบอกชนิดของปัจจัยทางกายภาพที่มีอิทธิพลต่อกลุ่มสิ่งมีชีวิตที่ทำน้ำสารวณผานที่ลูดมา 3 ชนิด แต่ละชนิดมีอิทธิพลต่อกลุ่มสิ่งมีชีวิตอย่างไร
บทที่ 2
ปัจจัยทางเคมีของระบบนิเวศ

หลักการ

สารประกอบอินทรีย์และอนินทรีย์ พยาบาทของสิ่งมีชีวิตในระบบนิเวศเช่นเดียวกันกับปัจจัยทางกายภาพ โดยเฉพาะอย่างยิ่งในอุณหภูมิ ออกซิเจนและคุณสมบัติละลายได้เส้นน้ำโดยแทรกอยู่ในสภาวะระหว่างผนังเซลล์ของน้ำ แล้วละลายถูกใช้โดยผนังเซลล์ของน้ำอย่างกว้างขวางในสภาวะของน้ำในรูปของ คาร์บอนไดออกไซด์ (free CO₂) และบางส่วนละลายได้เล็กน้อย ส่วนนี้จะสู่พ้องกันกับการละลายของออกซิเจน การละลายนี้ทำให้เกิดการเปลี่ยนแปลงของอิเล็กตรอนต่างๆ มีผลกระทบต่อการดำรงชีวิตของสิ่งมีชีวิตในอุณหภูมิ กล่าวคือ ออกซิเจนเป็นปัจจัยสำคัญของการดำรงชีวิตของสิ่งมีชีวิต

แทนที่จะใช้การออกซิเจนในการดำรงชีวิตอยู่ในน้ำ เพราะมันทำให้ผลการมีการแทนที่ออกซิเจนของสิ่งมีชีวิต

ในทางที่ก้าวข้างการควบคุมการออกซิเจนไม่จำเป็นต้องรวมอยู่ในกระบวนการแทนที่ออกซิเจน(จ่านเป็นสิ่งมีชีวิต)

การละลายน้ำใช้ควบคุมการควบคุมโดยออกซิเจนนี้ทำให้มี pH เป็นการก่ออ่อนตามคุณสมบัติของ

การควบคุมนี้ ซึ่งมีผลต่อการดำรงชีวิตของสิ่งมีชีวิตที่มีการดำรงชีวิตอยู่ในสภาวะของ pH

ที่เหมาะสมต่างกัน โดยเฉพาะพวกแค็ปเตอร์ การเปลี่ยนแปลง อาจมีผลต่อสิ่งมีชีวิตที่มีการดำรงชีวิตอยู่ในสภาวะผนัง

การควบคุมสิ่งมีชีวิตอยู่ในสภาวะผนังโดยเฉพาะของผนังเซลล์และผนังนักอิจฉา ขณะนี้ผนังบางส่วนที่มีสิ่งมีชีวิตอยู่ในรูปแบบที่พบพบและ pΗ ของน้ำจึงอยู่ในสภาพเป็นกลาง

วัตถุประสงค์
1. เพื่อศึกษาส่วนประกอบทางเคมีที่สำคัญในอุณหภูมิ
2. เพื่อศึกษาความเป็นกรดเป็นเบสของอุณหภูมิ
การเตรียมสารละลาย

1. สารละลายสำหรับการตรวจหาคาร์บอนไดออกไซด์ในอากาศ (free CO₂)
   1.1 สารละลาย พีโนหลาฟเหนือ (phenolphthalein) เพื่อใช้เป็น อินดิเคเตอร์ (indicator) เช่น พีโนหลาฟเหนือ 2 กรัม และยาใส 50% แอลกอฮอล์ (ethanol) 400 มิลลิลิตร ทำให้เป็น กลาง (neutralize) ด้วย N/50 NaOH
   1.2 สารละลาย N/44 NaOH (0.0227N) มาจากหลักการตามสมการ
   
      \[
      2\text{NaOH} + \text{CO}_2 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \quad \ldots \ldots \ldots \ldots (1)
      \]
      \[
      \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \rightarrow 2\text{NaHCO}_3 \quad \ldots \ldots \ldots \ldots (2)
      \]
   จากสมการ (1) และ (2) จะเห็นได้ว่า คาร์บอนไดออกไซด์ ที่ใช้ในการวัดมูลค่าผลิตภัณฑ์ไวน์ 或者 พิษยากร น้ำเพื่อผลิตภัณฑ์ หรือ ผลิตภัณฑ์อื่น ๆ ที่มีส่วนประกอบอยู่ในบรรยากาศ ในการตรวจหาคาร์บอนไดออกไซด์ในอากาศ สุทธิ ปรับปฏิบัติการนี้เพื่อให้เกิดการใช้สารละลายไวน์ หรือ ผลิตภัณฑ์อื่น ๆ โดยทำการเตรียมดังนี้

- ขั้น NaOH 4 กรัม และยาใสน้ำอัลคเทอร์ 100 มิลลิลิตร สารละลายที่ได้มีความเข้มข้น 1 N ทำให้เป็นสารละลายไวน์อัลคเทอร์ความเข้มข้น N/44(0.0227N) โดยคำนวณจาก

    \[
    \text{N}_1 \times \text{V}_1 = \text{N}_2 \times \text{V}_2
    \]
    \[
    \text{N}_1 = 1, \text{N}_2 = 0.0227, \text{V}_1 = 100 \text{ มิลลิลิตร}
    \]
    \[
    \text{V}_2 = \frac{0.0227 \times 100}{1} = 2.27 \text{ มิลลิลิตร}
    \]

- ดังนั้นให้ใช้ NaOH ความเข้มข้น 1 N เพื่อ 2.27 มิลลิลิตร ใส่ลงใน volumetric flask ขนาดบรรจุ 100 มิลลิลิตร แล้วเติมน้ำอัลคเทอร์ลงไปได้บริเวณเครื่องซิล 100 มิลลิลิตร เก็บสารละลาย NaOH ความเข้มข้น N/44 ที่เตรียมได้ใช้ในการตรวจหาคาร์บอนไดออกไซด์ในอากาศ

2. สารละลายสำหรับการตรวจหา ออกซิเจนที่ละลายใน (dissolved O₂ = D.O)
   2.1 สารละลาย แอมโมเนียชีคลีฟ (MnSO₄·4H₂O)
    ละลายแอมโมเนียชีคลีฟ 480 กรัม ในน้ำกลั่น ถัง แล้วทำให้เป็น 1 ลิตร
   2.2 สารละลาย แอลคาไลนิโอไอดีน (alkaline iodine):
    ประกอบด้วย
    A. NaOH 500 กรัม หรือ KOH 700 กรัม
    B. NaI 135 กรัม หรือ KI 150 กรัม
    ละลายสารเคมีแต่ละชนิดในน้ำกลั่น แล้วทำให้เป็น 1 ลิตร อัลคาไลนิโอไอดีน (sodium azide (NaN₃)
    10 กรัมต่อสารละลาย alkaline iodine 1 ลิตร เหตุป้องกันการเกิดของ NO₂
   2.3 สารละลาย กรดซัฟิวิวิริกซ์คึกชัก (conc. H₂SO₄ sp. gr. 1.83 – 1.84)
2.4 สารละลาย โซเดียมไทโอซัลเฟต (sodium thiosulfate)
สารละลายโซเดียมไทโซลเฟต 6.205 กรัม ละลายในน้ำกลิ่น แล้วเทให้เป็น 1 ลิตร สารละลายนี้มีความเข้มข้น N/40
เดิมคลอโรฟอร์ม (chloroform) 5 มิลลิลิตร เพื่อป้องกันไม่ให้เสีย เก็บในภาชนะสีน้ำตาล ใช้ได้ในช่วงเวลา 3-4 ปี แต่ห้ามเก็บต่อเนื่องยาวนานกว่า 6 เดือน
เมื่อผลิติกว่าความเข้มข้นไม่ถึง N/40 แก้ไขได้โดยวิธีการทำให้เป็น สารละลายมาตรฐาน (standardize) N/40 ด้วย usal เซียร์มโคลอเรต (potassium dichromate) ตามระเบียบวิธีในข้อ 2.6

2.5 สารละลายน้ำตาล(starch solution)
ละลายน้ำตาล(potato starch) 5 กรัม ในน้ำกลิ่นเล็กน้อย แล้วเทให้เป็น 1 ลิตร แล้วปิด (preserve)ไม่ให้เสื่อมสูญด้วยการเติม คลอโรฟอร์ม หรือ ซิงค์คลอไรเดซ (zinc chloride) ลงไปเล็กน้อย เช่นในน้ำตาล

2.6 วิธีเบี่ยงบังการทำความเข้มข้นสารละลายโซเดียมไทโซลเฟต เพื่อใช้เป็นบรรมิณ ออกซิเจนที่ละลายใน
สารละลายโพเลซิซัลไลน์ (KI) 2.5 กรัม ในน้ำกลิ่น 50-75 มิลลิลิตร ในภาชนะ (Erlenmeyer flask)

เดิมคลอโรฟอร์มเข้มข้น 0.5 มิลลิลิตร
ใช้บริเวณเดิม 0.025 N usal ไคลอเรตไทรอเมทิล (K₂Cr₂O₇) 20 มิลลิลิตร เทมจาก K₂Cr₂O₇ 1.2925 กรัมในน้ำ 1 ลิตร

เหตุผลสารละลายผสมนี้ดีเพราะที่เงาหรือเก็บไว้ในที่มืด 5 นาที
โดยทั่วไป โซเดียมไทโซลเฟต ให้เป็นสารละลายมาตรฐาน โดยใช้น้ำป่า 2-3 หลอดเป็นอินดิแคทร์
การทำโซเดียมไทโซลเฟต มีความเข้มข้นเป็น N/40 พอที่ usal ไคลอเรตไตรอเมทิล ที่ใส่ในเดิม จะให้ปริมาณเป็น 20 มิลลิลิตร พอที่ แล้วเท่ากับปริมาณออกซิเจนที่มีอยู่เป็น p.p.m.

ในการที่ใช้ usal ไคลอเรตไตรอเมทิล เทม 20 มิลลิลิตร สารละลายโซเดียมไทโซลเฟตนี้จะมีความเข้มข้นเท่ากับ N/40 ทำ titration value ที่สุดขึ้น correction factor จะน้อยกว่า 1 เช่นใช้usal ไคลอเรตไตรอเมทิล 22 มิลลิลิตร น้ำ 22 ไปหาร 20 (20/22 = 0.91)

correction factor = 0.91
ดังนั้นฉันจึงได้ทำการทดสอบกับผลิตภัณฑ์ ปริมาณของโซเดียมไฮโดรไธเดอร์จากสารละลายออกอา
เป็น 12 มิลลิลิตร ให้ค่าสูตรดี 0.91 จะได้ค่า D.O. เป็น 10.9 p.p.m.

ในกรณีที่ใช้ พอเพนเซ็ยแรกคริสโตมาด ตัวมากกว่า 20 มิลลิลิตร ความเข้มข้นของ โซเดียมไฮโด
ซัลเฟต จะประมาณว่า N/40 ค่า titration value จะต้องการ correction factor จะน้อยกว่า 1 เช่น
น้ำทำให้พอเพนเซียแรกคริสโตมาด 18 มิลลิลิตร น้ำ 18 โปรดกา 20 (20/18 = 1.1)

 correction factor = 1.11

ดังนั้นฉันจึงได้ทำการทดสอบกับผลิตภัณฑ์ ปริมาณของโซเดียมไฮโดรซัลเฟตจากสารละลายออกอา
เป็น 8 มิลลิลิตร ให้ค่าสูตรดี 1.1 จะได้ค่า D.O. เป็น 8.88 p.p.m.

3. สารละลายสำหรับการตรวจหา ความเป็นเบส(alkalinity)

3.1 การเตรียมสารละลาย นีทิโอคาร์นีน(methyl orange) เพื่อใช้เป็นอินเด็กเตอร์.

ขั้นแรกโมโนคาร์นีน 0.2 กรัม และลาดในน้ำกลั่น 400 มิลลิลิตร เก็บสารละลายที่เตรียมได้ไว้
ในภาชนะสำหรับที่มีจุกปิด

ระเบียบวิธี

1. การเก็บตัวอย่างน้ำ

การเก็บตัวอย่างน้ำเพื่อทำการวิเคราะห์ทางเคมี ควรทราบความเสียของน้ำ ณ จุดที่เก็บ และ
ควรระดับจุดไว้ให้ตัวอย่างน้ำ ณ แหล่งน้ำนั่น ปรับเก็บน้ำในแหล่งน้ำ

ในกรณีที่ต้องการทราบปริมาณของ แก๊สที่ละลายใน(dissolved gas)ในตัวอย่างนั้น ควร
เก็บอย่างระดับจุดไว้ โดยไม่ให้มีการเสียสránกันแล้วในบรรยากาศ

เครื่องมือมาตรฐานสำหรับการเก็บตัวอย่างน้ำดีเอ็นแอมโพรเมอร์(Kemmerer water sampler)
ซึ่งประกอบด้วยระบบสกัดโพลิซีนที่มีความรุ่ 1-2 ลิตร มีหูยาง(rubber stopper)อยู่ที่ปลายส่ง
ของชิ้น ที่ต่ออยู่กับสายยางและจะถูกน้ำماส์เวนกับปุ๊มหลอกก่อนการหยุด Kemmerer
water sampler ลงในน้ำที่ต้องการเก็บตัวอย่าง ปลายส่งของชิ้นของระบบจึงอยู่ในสกัดโพลิ
ตามแนวตัง เนื่องจากระดับความส่าที่ต้องการแล้ว รีบส่งสูงตุ่น(messenger) ลงไปตามสายซีก
ระบบที่สั่งให้สกัดถูกแยกขั้นตอน ปล่อยให้จัดการเป็นอิสระ ถูกส่งกลับมาเป็นหัวขั้นตอนหลักลง
น้ำดี เรียกน้ำทำให้สามารถเก็บน้ำในระดับนั้นได้โดยไม่มีน้ำในระดับอื่นเข้าไปด้วย แล้วจึงใส่
Kemmerer water sampler ขึ้นมาแต่ละอย่างน้ำนั้นไปทำการวิเคราะห์ต่อไป เครื่องมือส่วนตัวอย่าง
น้ำดีเอ็นแอมโพรเมอร์(Van Dorn) (รูป 2-1) ได้ผลการเป็นเลือก العمر ต่ำกว่าที่

13
กองทุนพลังงานต่อเติม

1.1 การเก็บตัวอย่างน้ำเพื่อตรวจสอบค่าคาร์บอนไดออกไซด์ในน้ำ

1.2 การเก็บตัวอย่างน้ำเพื่อตรวจสอบค่าออกซิเจนที่ละลายในน้ำ
การเก็บตัวอย่างน้ำ ควรเก็บจากหลายจุดของแหล่งน้ำ และในระดับความลึกต่างกัน ดังนั้น

2. การวิเคราะห์สารประกอบทางเคมีของน้ำ
2.1 การวิเคราะห์ คาร์บอนไดออกไซด์สารละลาย
2.1.1 นำตัวอย่างน้ำ 100 มิลลิลิตร ใส่ในพลาสคร หรือ เนสเลอร์ทิว์ (Nessler tube) จน
มีน้ำ 100 ซีซี
2.1.2 หลอด ฟิวอลฟอยด์ ลงไป 10 หยด
2.1.3 ใส่สารละลาย N/44 NaOH จนมีสีชมพูผลิลัสซึ่งราว (2-3 นาที) อย่าให้สารละลายน้ำมีสีชมพูอยู่สักการะ ระหว่างการใส่สารละลายควรเริ่มจากน้ำตัวอย่างมาก เพราะจะทำให้ปริมาณ
ของแก๊สที่ละลายในน้ำเปลี่ยนแปลง ควรใช้ชีวิติการปิดข้อเป็นบางกลุ่มเพื่อให้สารละลายต่างๆ ผสม
กันได้เพียงพอ
ปริมาณของ คาร์บอนไดออกไซด์สารละลาย ในน้ำ เท่ากับปริมาณ (หน่วยเป็นมิลลิลิตร) ของ
N/44 NaOH ที่ใช้ในการใส่สารละลาย ดูน้อย 10 หน่วยเป็นมิลลิกรัมต่อลิตร (1 ml.
ของ NaOH = 1 mg. dissolved CO₂)
ข้อสังเกต
ถ้ามีฟิวอลฟอยด์ ลงไป แล้วมีสีชมพูเกิดขึ้นทันที แสดงว่าไม่มีคาร์บอนไดออก
ซิดสาร

2.2 การวิเคราะห์ ออกซิเจนที่ละลายน้ำ
ระเบียบวิธีที่นิยมปฏิบัติกันมากคือ วิธีวิงก์เลอร์ (Winkler method) ซึ่งมีหลักการดังนี้
คือ
เมจานัสโซเดียมออกไซด์ (manganese hydroxide) จะดูดซึม (absorb) ออกซิเจนที่ละลายอยู่
ในน้ำ เนื่องด้วยสารละลายออกซิเจนลงไป และด้วยถังน้ำถูกทำให้เป็นการ  oidolนั้นจะถูกเปลี่ยน
ออกมาเป็นสัดส่วนตรง (direct proportion)กับปริมาณออกซิเจนที่ถูกดูดซึ้งนั้น ปริมาณออก
ซิดสารได้โดยการใส่สารละลาย ไนโตรเลอ (nitrocellulose) ปฏิกิริยาเคมีที่เกิดเป็นไปตามสมการดัง
นี้

\[ \text{MnSO}_4 + 2\text{KOH} \rightarrow \text{Mn(OH)}_2 + \text{K}_2\text{SO}_4 \]
\[ 2\text{Mn(OH)}_2 + \text{O}_2 \rightarrow 2\text{MnO(OH)}_2 \]
\[ \text{MnO(OH)}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{Mn(SO}_4)_2 + 3\text{H}_2\text{O} \]
ถ้าตัวอย่างที่มีสารคู่ต้าน (interfering agent) เช่น nitrate, sulfite, feric ion และ organic compound บางชนิด อาจปรุงปริมาณการละลายที่จะเกิดขึ้นได้ แต่สามารถแก้ไขด้วยการดิสส่วนอย่าง เช่น เทม sodium azide ลงไปในไถกนิยม เพื่อทำให้สารคู่ต้านหายไปเป็นสิ้น เกินล็อส และจึงดำเนินการวิเคราะห์ออกซิเจนที่ละลายน้ำตามขั้นตอนดังนี้

2.2.1 เทตัวอย่างที่ต้องการวิเคราะห์ในสัดส่วน B.O.D. เที่ยวนิยม manganese sulfate solution 1 มิลลิลิตร

2.2.2 เที่ยวนิยม alkaline potassium iodide 3 มิลลิลิตร ได้ช่วงของเวลา

2.2.3 ปิดจุกหลอด ระวังไม่ให้เกิดสีของอากาศ เช่น 15 วินาที แล้วทั้งนิยมให้ตุ่มแรก (บริม- ผนังขึ้นแพร่ปริมาณออกซิเจนที่ละลายน้ำ) ถ้าการตุ่มแรกนี้เกิดขึ้นข้างหน้าให้ขยายหลอดล็อสต์ครั้ง

2.2.4 เที่ยวนิยม conc. H₂SO₄ 2 มิลลิลิตร เที่ยวนิยมระดับน้ำในหลอดโดยใช้ใบมีดปลายเฉียงที่ โคจร ปิดจุกหลอด อย่างไม่ให้เกิดสีของอากาศ และเที่ยวนิยมให้สารละลายด่าง ๆ ผสมเข้ากันดี หลังจากนั้นควรที่ให้ประมาณครึ่งชั่วโมง หรือกว่านั้น

ขั้นสุดท้าย

ถ้าปริมาณออกซิเจนที่ละลายน้ำมีมากกว่าหลายสิบ พลัง ทำการทดลองต่อไป ถ้าตัวอย่างมีไม่เสื่อมอย่างใดไม่ประโยชน์ออกซิเจนที่ละลายน้ำ หยุดการทดลองที่ขั้นตอนนี้

2.2.5 หยิบขั้นอย่างน้ำ 200 มิลลิลิตร วัดด้วย volumetric flask แล้วเทลงในขวดรูปหมู่ (Erlenmeyer flask) ขนาด 500 มิลลิลิตร

2.2.6 ใดเตรียม ด้วย N/40 (0.025 N) Na₂S₂O₃ (โซเดียมไนโตรซิทิฟ) จนกระทั่งตัว อายาเป็นสีทองอ่อน จึงเติมน้ำป้อง 2-3 หยด สารละลายจะเปลี่ยนเป็นสีน้ำเงิน

2.2.7 ใดเตรียมโดยใช้กระดาษสีขาววางรองไว้ที่ก้นหลอด และทดสอบสารละลายโดยเติม โอนขั้นต่อมีทางบ้านของที่จะทดสอบน้ำสีเงินเปลี่ยนเป็นไม่มีสี

ในกรณีที่ใช้เติมโดยใช้กระดาษสีขาว ผลค่า D.O.* มี หน่วยเป็น p.p.m. (โดยน้ำหนัก) (มิลลิกรัม/ลิตร) เท่ากับปริมาณโซเดียมไซโคลปีที่ใช้

* ปริมาณออกซิเจนที่ละลายน้ำหน่วยเป็น p.p.m.(mg./l.) นี้ เป็นยี่เป็นมิลลิลิตร/ลิตร (ml./l.) โดยการคูณด้วย 0.698
ในกรณีที่ใช้ยีนไฮโดรคลอเรตที่ใช้ในเตาเรือมีค่าความแฉบมากๆกว่าหรือน้อยกว่า N/40 ให้ ถูกล์ปริมาตร มีผลิตการของไฮโดรคลอเรต ด้วย คำคัน(correction value) ซึ่งจะได้ปริมาณที่ แท้จริงของ D.O. ในหน่วย p.p.m. (โดยน้ําหนัก)
ปริมาณออกกิจเบนที่สอบถามน้ําในหน่วย มีหลักการต่อไปนี้ มีค่าเท่ากับหน่วย p.p.m. แต่เป็นหน่วยน้ําหนัก/ปริมาตร

2.3 การตรวจหา ความเป็นเบส(alkalinity)
ความเป็นเบส หมายถึง ปริมาณของเบสมั่งหมดในน้ําที่สามารถเปลี่ยนความเป็นกรดให้ เป็นกลาง(neutralize)ได้ ในน้ําธรรมเนียม (unpolluted water) เบสนี้พบทั่วไป คือ bicarbonate, carbonate และ hydroxide ค่าเหล่านี้หาได้โดยการไดเตอร์ด้วย ฟันอลโลฟลูอิน ในขั้นแรก และไดเตอร์ ที่มีผลน้อยน้าหนัก ดังนี้:
2.3.1 เที่ยนอย่างน้อย 50 มิลลิลิตรในขั้นปรีปรุงผู้ผู้แยกลา 250 มิลลิลิตร
2.3.2 หยด ฟันอลโลฟลูอินไป 4 หยด (เจ้าสิมพพูนไม่เกิดขึ้นทันที แสดงว่า phenolphthalein alkalinity(P) เป็น 0)
2.3.3 ถ้าฟันธุอิกเกิดขึ้นให้เตารับดั่ย N/50 กรดขั้น фирกก จนกระทั่งมีสิ่งมุ่งมั่นลงที่เกิดขึ้น ค่า phenolphthalein alkalinity หาได้โดยการลูปปริมาตร กรดขั้นฟิชิกก์ที่ใส่ด้วย 20
2.3.4 เที่ยว แมสโลฟลูอิน ลงไป 4 หยด ไลเดอร์จนกระทั่งสิ่งมุ่งมั่นลงที่เหลือเป็นสิ่งมุ่งมั่นที่ เที่ยวกรดขั้นฟิชิกก์(หน่วยเป็นมิลลิลิตร)ที่ใช้ในการ ไลเดอร์ที่หมดคด้วย 20
เพื่อพบค่า P และ T แล้วก้าหาความเป็นเบส(ในหน่วย ppm.) ของส่วนประกอบต่างๆ ได้จากตาราง Alkalinity Calculations

<table>
<thead>
<tr>
<th></th>
<th>P=0</th>
<th>P&lt;1/2T</th>
<th>P=1/2T</th>
<th>P&gt;1/2T</th>
<th>P=T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonate</td>
<td>T x 20</td>
<td>(T-2P) x 20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbonate</td>
<td>0</td>
<td>2P x 20</td>
<td>T x 20</td>
<td>2(T-P) x 20</td>
<td>0</td>
</tr>
<tr>
<td>Hydroxide</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(2P-T) x 20</td>
<td>T x 20</td>
</tr>
</tbody>
</table>

(ข้อสังเกต: เพื่อให้ผลการวิเคราะห์ดู่ต้องมากที่สุด ควรใช้สารละลายผสมของ น้ำมันเครื่อง กรีน(brome cresol green) และเมทธิลเรด(methyl red)แทนแมสโลฟลูอิน ปริมาตรการไลเดอร์